Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features

The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost‐effective, pollution‐free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10–15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data—especially related to materials—have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.

[1]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[2]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[3]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[4]  D. Cahill,et al.  Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe , 2009 .

[5]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[6]  J. Bowers,et al.  Effect of Nanoparticles on Electron and Thermoelectric Transport , 2009 .

[7]  Supriyo Datta,et al.  Influence of Dimensionality on Thermoelectric Device Performance , 2008, 0811.3632.

[8]  Sebastian Volz,et al.  Thermal nanosystems and nanomaterials , 2009 .

[9]  M. Zebarjadi,et al.  Nanoengineered Materials for Thermoelectric Energy Conversion , 2009 .

[10]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[11]  Ctirad Uher,et al.  Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. , 2008, Angewandte Chemie.

[12]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[13]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[14]  H. Ohta,et al.  Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO3/SrTi0.8Nb0.2O3 superlattices , 2008 .

[15]  M. P. Walsh,et al.  Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices , 2008 .

[16]  Gao Min,et al.  Multiple potential barriers as a possible mechanism to increase the Seebeck coefficient and electrical power factor , 2008 .

[17]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[18]  S. Faleev,et al.  Theory of enhancement of thermoelectric properties of materials with nanoinclusions , 2008, 0807.0260.

[19]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[20]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[21]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[22]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[23]  J. Bowers,et al.  Cross-plane Seebeck coefficient and Lorenz number in superlattices , 2007 .

[24]  J. Tu,et al.  Improved thermoelectric figure of merit in n-type CoSb3 based nanocomposites , 2007 .

[25]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[26]  Ronggui Yang,et al.  Effect of interface scattering on phonon thermal conductivity percolation in random nanowire composites , 2007 .

[27]  Matthew J. Kramer,et al.  In-situ elevated-temperature TEM study of (AgSbTe2)15(GeTe)85 , 2007 .

[28]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[29]  A. Shakouri,et al.  Thermionic power generation at high temperatures using SiGe∕Si superlattices , 2007 .

[30]  M. J. Kramer,et al.  Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material , 2007 .

[31]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[32]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[33]  N. Mingo,et al.  Theory of the thermoelectric power factor in nanowire-composite matrix structures , 2006 .

[34]  H. Lengfellner,et al.  Transverse Peltier effect in tilted Pb–Bi2Te3 multilayer structures , 2006 .

[35]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[36]  M. Kanatzidis,et al.  Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation , 2006 .

[37]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[38]  J. Bowers,et al.  Cross-plane lattice and electronic thermal conductivities of ErAs:InGaAs∕InGaAlAs superlattices , 2006 .

[39]  Min Zhou,et al.  High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering , 2006 .

[40]  S. Mahanti,et al.  Ab initio study of deep defect states in narrow band-gap semiconductors: group III impurities in PbTe. , 2006, Physical review letters.

[41]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[42]  G. Stucky,et al.  Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30 , 2006 .

[43]  Rama Venkatasubramanian,et al.  Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity , 2005 .

[44]  A. Balandin,et al.  Electrical and Thermal Conductivity of Ge ∕ Si Quantum Dot Superlattices , 2005 .

[45]  S. Guruswamy,et al.  Importance of barrier layers in thermal diodes for energy conversion , 2005 .

[46]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[47]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[48]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[49]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[50]  Ali Shakouri,et al.  Electronic and thermoelectric transport in semiconductor and metallic superlattices , 2004 .

[51]  C. M. Thrush,et al.  Resistance, magnetoresistance, and thermopower of zinc nanowire composites. , 2003, Physical review letters.

[52]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[53]  Li Shi,et al.  Mesoscopic thermal transport and energy dissipation in carbon nanotubes , 2002 .

[54]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[55]  P. L. Hagelstein,et al.  Enhanced figure of merit in thermal to electrical energy conversion using diode structures , 2002 .

[56]  Ronald Gronsky,et al.  Fabrication of High‐Density, High Aspect Ratio, Large‐Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates , 2002 .

[57]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[58]  M. D. Ulrich,et al.  Comparison of solid-state thermionic refrigeration with thermoelectric refrigeration , 2001 .

[59]  Ali Shakouri,et al.  SiGeC/Si superlattice microcoolers , 2001 .

[60]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[61]  Ali Shakouri,et al.  High cooling power density SiGe/Si microcoolers , 2001 .

[62]  D. Broido,et al.  Thermoelectric power factor in superlattice systems , 2000 .

[63]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[64]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[65]  Mahan,et al.  Minimum thermal conductivity of superlattices , 1999, Physical review letters.

[66]  P. J. Taylor,et al.  Thermoelectric quantum-dot superlattices with high ZT , 2000 .

[67]  Cronin B. Vining,et al.  The B factor in multilayer thermionic refrigeration , 1999 .

[68]  M. Dresselhaus,et al.  Mechanism of the enhanced thermoelectric power in (111)-oriented n-type PbTe/Pb_{1-x}Eu_{x}Te multiple quantum wells , 1999 .

[69]  J. Ying,et al.  Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires , 1999 .

[70]  K. H. Ploog,et al.  Thermal conductivity of GaAs/AlAs superlattices , 1999 .

[71]  G. Mahan,et al.  Multilayer thermionic refrigeration , 1998, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[72]  M. P. Walsh,et al.  PbTe/Te superlattice structures with enhanced thermoelectric figures of merit , 1999 .

[73]  Takaaki Koga,et al.  Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices , 1998 .

[74]  Y. Ravich,et al.  REVIEWS OF TOPICAL PROBLEMS: Thallium dopant in lead chalcogenides: investigation methods and peculiarities , 1998 .

[75]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[76]  G. Mahan,et al.  Multilayer thermionic refrigerator and generator , 1998, cond-mat/9801187.

[77]  Per Hyldgaard,et al.  Phonon superlattice transport , 1997 .

[78]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[79]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[80]  M. Manfra,et al.  High thermoelectric figures of merit in PbTe quantum wells , 1996 .

[81]  M. Dresselhaus,et al.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[82]  T. Hirano,et al.  SUPERLATTICE APPLICATIONS TO THERMOELECTRICITY , 1995 .

[83]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[84]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[85]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[86]  Pohl,et al.  Thermal conductivity of amorphous solids above the plateau. , 1987, Physical review. B, Condensed matter.

[87]  A. Gossard,et al.  Selective Transmission of High-Frequency Phonons by a Superlattice: The , 1979 .

[88]  F. Granozio Films , 1974, Études.

[89]  Ono Takasi,et al.  The Thermoelectric Properties of AgSbTe2-AgBiTe2, -PbTe and -SnTe Systems , 1962 .

[90]  H J Goldsmid,et al.  The performance of bismuth telluride thermojunctions , 1958 .

[91]  H J Goldsmid,et al.  The use of semiconductors in thermoelectric refrigeration , 1954 .