Recurrence Relations, Succession Rules, and the Positivity Problem

In this paper we present a method which can be used to investigate on the positivity of a number sequence defined by a recurrence relation having constant coefficients (in short, a \(C\)-recurrence).

[1]  Andrea Frosini,et al.  A Technology for Reverse-Engineering a Combinatorial Problem from a Rational Generating Function , 2001, Adv. Appl. Math..

[2]  Elena Barcucci,et al.  Some linear recurrences and their combinatorial interpretation by means of regular languages , 2001, Theor. Comput. Sci..

[3]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[4]  Tero Harju,et al.  Positivity of second order linear recurrent sequences , 2006, Discret. Appl. Math..

[5]  Stefan Gerhold,et al.  Combinatorial Sequences: Non-Holonomicity and Inequalities , 2008 .

[6]  J. Berstel,et al.  Deux propriétés décidables des suites récurrentes linéaires , 1976 .

[7]  Dominique Perrin On Positive Matrices , 1992, Theor. Comput. Sci..

[8]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[9]  Matti Soittola,et al.  Positive Rational Sequences , 1976, Theor. Comput. Sci..

[10]  Srecko Brlek,et al.  On the equivalence problem for succession rules , 2005, Discret. Math..

[11]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[12]  S. Corteel,et al.  Séries génératrices exponentielles pour les ECO-systèmes signés , 2000 .

[13]  Stefano Bilotta,et al.  Avoiding cross-bifix-free binary words , 2013, Acta Informatica.

[14]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[15]  Christoph Koutschan,et al.  Regular languages and their generating functions: The inverse problem , 2008, Theor. Comput. Sci..

[16]  Vichian Laohakosol,et al.  Positivity of third order linear recurrence sequences , 2009, Discret. Appl. Math..

[17]  Andrea Frosini,et al.  A Note on Rational Succession Rules , 2003 .

[18]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[19]  Renzo Pinzani,et al.  Jumping succession rules and their generating functions , 2003, Discret. Math..

[20]  Jean Berstel,et al.  Another proof of Soittola's theorem , 2008, Theor. Comput. Sci..

[21]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[22]  Renzo Pinzani,et al.  An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..