Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency

[1]  W. Pear,et al.  Notch signaling in mammalian hematopoietic stem cells , 2011, Leukemia.

[2]  J. Aster,et al.  Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. , 2011, Blood.

[3]  D. Langenau,et al.  Quantifying the Frequency of Tumor-propagating Cells Using Limiting Dilution Cell Transplantation in Syngeneic Zebrafish , 2011, Journal of visualized experiments : JoVE.

[4]  C. Sherr,et al.  Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies. , 2011, Blood.

[5]  J. Soulier,et al.  Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations , 2011, Leukemia.

[6]  F. Sigaux,et al.  Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse , 2011, The Journal of experimental medicine.

[7]  A. Capobianco,et al.  Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia. , 2011, Blood.

[8]  David M Langenau,et al.  High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope , 2011, Nature Protocols.

[9]  J. Aster,et al.  Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL. , 2010, Blood.

[10]  H. Macdonald,et al.  Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. , 2010, Immunity.

[11]  James R. Downing,et al.  Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells , 2011, Nature.

[12]  L. Zon,et al.  T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. , 2010, Cancer cell.

[13]  Andrea Califano,et al.  The TLX1 oncogene drives aneuploidy in T-cell transformation , 2010, Nature Medicine.

[14]  T. Hoang,et al.  Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. , 2010, Genes & development.

[15]  L. Zon,et al.  High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. , 2010, Blood.

[16]  C. D. de Graaf,et al.  The Lmo2 Oncogene Initiates Leukemia in Mice by Inducing Thymocyte Self-Renewal , 2010, Science.

[17]  G. Smyth,et al.  ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. , 2009, Journal of immunological methods.

[18]  Y. Lévy,et al.  Notch ligands potentiate IL‐7‐driven proliferation and survival of human thymocyte precursors , 2009, European journal of immunology.

[19]  H. Dombret,et al.  NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. , 2009, Blood.

[20]  W. Evans,et al.  A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. , 2009, The Lancet. Oncology.

[21]  A. Protopopov,et al.  Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1 , 2008, The Journal of experimental medicine.

[22]  Jeffrey T. Chang,et al.  Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma. , 2008, Cancer research.

[23]  R. Pieters,et al.  Molecular‐genetic insights in paediatric T‐cell acute lymphoblastic leukaemia , 2008, British journal of haematology.

[24]  L. Zon,et al.  Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish , 2008, Oncogene.

[25]  P. Knoepfler Why myc? An unexpected ingredient in the stem cell cocktail. , 2008, Cell stem cell.

[26]  A. Look,et al.  Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. , 2007, Blood.

[27]  L. Zon,et al.  Effects of RAS on the genesis of embryonal rhabdomyosarcoma. , 2007, Genes & development.

[28]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[29]  M. Kelliher,et al.  The Notch1/c-Myc Pathway in T Cell Leukemia , 2007, Cell cycle.

[30]  A. Protopopov,et al.  The Differentiation and Stress Response Factor XBP-1 Drives Multiple Myeloma Pathogenesis , 2007, Cancer cell.

[31]  A. Look,et al.  NOTCH1-induced T-cell leukemia in transgenic zebrafish , 2007, Leukemia.

[32]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[33]  J. Aster,et al.  c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. , 2006, Genes & development.

[34]  Jeffrey T. Chang,et al.  Oncogenic pathway signatures in human cancers as a guide to targeted therapies , 2006, Nature.

[35]  F. Alt,et al.  Activating Notch1 mutations in mouse models of T-ALL. , 2005, Blood.

[36]  Y. Hayashi,et al.  Mutations of the Notch1 gene in T-cell acute lymphoblastic leukemia: analysis in adults and children , 2005, Leukemia.

[37]  A. Look,et al.  Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[39]  A. Ferrando,et al.  Gene expression profiling in T-cell acute lymphoblastic leukemia. , 2003, Seminars in hematology.

[40]  R. Gelber,et al.  Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[41]  S. Armstrong,et al.  Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. , 2003, Blood.

[42]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[43]  Jon C. Aster,et al.  Essential Roles for Ankyrin Repeat and Transactivation Domains in Induction of T-Cell Leukemia by Notch1 , 2000, Molecular and Cellular Biology.

[44]  H. Stein,et al.  High detection rate of T-cell receptor beta chain rearrangements in T-cell lymphoproliferations by family specific polymerase chain reaction in combination with the GeneScan technique and DNA sequencing. , 2000, Blood.

[45]  L. Girard,et al.  Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. , 1996, Genes & development.

[46]  J. Sklar,et al.  Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles , 1996, The Journal of experimental medicine.

[47]  K. Sikora,et al.  Leukemia , 1984, British Journal of Cancer.

[48]  Raymond E. Moellering,et al.  Direct inhibition of the NOTCH transcription factor complex , 2010, Nature.

[49]  H. Stein,et al.  Early TCR-beta and TCR-gamma PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma: diagnostic and prognostic implications. , 2005, Blood.

[50]  H. Stein,et al.  Early TCR-and TCR-PCR detection of T-cell clonality indicates minimal tumor disease in lymph nodes of cutaneous T-cell lymphoma : diagnostic and prognostic implications , 2004 .