Trends in the infrared and near infrared properties of organic conductors

It is demonstrated that the infrared spectrum of a typical organic linear chain conductor can be understood as follows. The near infrared shows typical plasmon behaviour, and it appears that the plasma frequency is related to the crystal structure and one-electron parameters as in ordinary metals. Thus band structure parameters can be derived and the infrared oscillator strength for the corresponding non-interacting electron gas can be predicted. In all cases the actual measured oscillator strength is significantly smaller. The information contained in this deviation can be quantified by means of a sum rule, which relates oscillators strength and electron kinetic energy. The latter is a measure of the Coulomb driven electron localisation.

[1]  Carmelo,et al.  Correlation effects on the oscillator strength of optical absorption: Sum rule for the one-dimensional Hubbard model. , 1986, Physical review. B, Condensed matter.

[2]  C. S. Jacobsen,et al.  Infrared properties of the ambient pressure organic superconductor (BEDT-TTF)2I3 , 1985 .

[3]  C. S. Jacobsen,et al.  Regular Properties and Anomalous Behaviour Of Conducting M0. B [Pt(C2O4)2] 6H2O, M-OP(M=Ni, Co, Zn, Mg, Mn) , 1985 .

[4]  C. S. Jacobsen,et al.  Infrared Properties of the Magnetic Semiconductor DBTTF-TCNQC12 , 1985 .

[5]  C. S. Jacobsen,et al.  Optical and infrared properties of tetramethyltetraselenafulvalene [(TMTSF)2X] and tetramethyltetrathiafulvalene [(TMTTF)2X] compounds , 1983 .

[6]  Sumitendra Mazumdar,et al.  Systematic trends in short-range coulomb effects among nearly one-dimensional organic conductors , 1983 .

[7]  N. Thorup,et al.  The structure of dibenzo-1,4,5,8-tetrathiafulvalenium 2,5-dichloro-7,7,8,8-tetracyano-p-quinodimethanide, DBTTF–TCNQCl2, at 295 and 115 K , 1981 .

[8]  S. Mazumdar,et al.  Valence-bond analysis of extended Hubbard models: Charge-transfer excitations of molecular conductors , 1981 .

[9]  Taizo Sasaki,et al.  Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: Applications to aluminum , 1980 .

[10]  C. S. Jacobsen,et al.  Dibenzo-TTF-dichloro-TCNQ: a quasi-one-dimensional magnetic semiconductor , 1980 .

[11]  J. Fabre,et al.  Physical Properties of One Dimensional Conductors , 1979 .

[12]  J. Tanaka,et al.  REFLECTION SPECTRA AND ELECTRONIC STRUCTURES OF METALLIC TCNQ COMPLEXES * , 1978 .

[13]  C. S. Jacobsen,et al.  Transport properties of some derivatives of tetrathiafulvalene-tetracyano-p-quinodimethane (TTF-TCNQ) , 1978 .

[14]  J. Hubbard,et al.  Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ) salts , 1978 .

[15]  P. Maldague Optical spectrum of a Hubbard chain , 1977 .

[16]  E. Walker,et al.  Reflection spectroscopy for anisotropic materials: Direct determination of phase differences; validity of Fresnel formulas , 1977 .

[17]  C. S. Jacobsen,et al.  Optical Properties of Hexamethylene-Tetraselenafulvalinium Tetracyanoquinodi-Methanide (HMTSF-TCNQ) , 1977 .

[18]  T. Ishiguro,et al.  X-Ray Scattering Study of Phonon Anomalies and Superstructures in TTF–TCNQ , 1976 .

[19]  S. Etemad,et al.  Diffuse X-ray scattering in the metallic state of TSeF-TCNQ and HMTSeF-TCNQ , 1976 .

[20]  P. B. Allen Electron-Phonon Effects in the Infrared Properties of Metals , 1971 .

[21]  J. Sokoloff Free-Spin Magnetic Behavior of the One-Dimensional Near-Neighbor Hubbard-Model Electron System , 1970 .

[22]  T. Holstein,et al.  Theory of transport phenomena in an electron-phonon gas , 1964 .

[23]  T. Holstein,et al.  Optical and Infrared Volume Absorptivity of Metals , 1954 .