A Mass-Flux Cumulus Parameterization Scheme across Gray-Zone Resolutions

AbstractA method that enables a mass-flux cumulus parameterization scheme (CPS) to work seamlessly in various model grids across CPS gray-zone resolutions is proposed. The convective cloud-base mass flux, convective inhibition, and convective detrainment in the simplified Arakawa–Schubert (SAS) scheme are modified to be functions of the convective updraft fraction. The combination of two updraft fractions is used to modulate the cloud-base mass flux; the first one depends on the horizontal grid space and the other is a function of the grid-scale and convective vertical velocity. The convective inhibition and detrainment of hydrometeors are also modified to be a function of the grid-size-dependent convective updraft fraction.A set of sensitivity experiments with the Weather Research and Forecasting (WRF) Model is conducted for a heavy rainfall case over South Korea. The results show that the revised SAS CPS outperforms the original SAS. At 3 and 1 km, the precipitation core over South Korea is well reprodu...

[1]  A. Arakawa The Cumulus Parameterization Problem: Past, Present, and Future , 2004 .

[2]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[3]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[4]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[5]  A Study on the Characteristics of Summer Rainfall over South Korea in Recent 5 years , 2014 .

[6]  J. Kain,et al.  A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization , 1990 .

[7]  J. Dudhia,et al.  A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes , 2006 .

[8]  Extending the Simplied Arakawa-Schubert scheme for meso-scale model applications , 2014 .

[9]  Song-You Hong,et al.  Convective Trigger Function for a Mass-Flux Cumulus Parameterization Scheme , 1998 .

[10]  Niels Bormann,et al.  Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models , 2014 .

[11]  Song‐You Hong,et al.  Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: horizontal resolution versus lead time issues , 2014, Meteorology and Atmospheric Physics.

[12]  G. Bryan,et al.  Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics , 2012 .

[13]  H. Pan,et al.  Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System , 2011 .

[14]  H. Pan,et al.  Implementing a mass flux convection parameterization package for the NMC medium-range forecast model , 1995 .

[15]  W. J. Steenburgh,et al.  Impact of Microphysics Parameterizations on Simulations of the 27 October 2010 Great Salt Lake–Effect Snowstorm , 2015 .

[16]  J. Dudhia,et al.  Next-Generation Numerical Weather Prediction: Bridging Parameterization, Explicit Clouds, and Large Eddies , 2012 .

[17]  A. Arakawa,et al.  A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I , 2013 .

[18]  Xin‐Zhong Liang,et al.  Effects of cumulus parameterizations on predictions of summer flood in the Central United States , 2015, Climate Dynamics.

[19]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[20]  J. Geleyn,et al.  Cloud and Precipitation Parameterization in a Meso-Gamma-Scale Operational Weather Prediction Model , 2009 .

[21]  S. Freitas,et al.  Analyzing the Grell–Freitas Convection Scheme from Hydrostatic to Nonhydrostatic Scales within a Global Model , 2016 .

[22]  Dev Niyogi,et al.  Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme , 2016 .

[23]  James Correia,et al.  Forecasting Tornado Pathlengths Using a Three-Dimensional Object Identification Algorithm Applied to Convection-Allowing Forecasts , 2012 .

[24]  H. Kuo Further Studies of the Parameterization of the Influence of Cumulus Convection on Large-Scale Flow , 1974 .

[25]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[26]  Frederick H. Carr,et al.  A Prognostic Cloud Scheme for Operational NWP Models , 1997 .

[27]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[28]  S. Chou,et al.  Dependence of partitioning of model implicit and explicit precipitation on horizontal resolution , 2010 .

[29]  G. Grell Prognostic evaluation of assumptions used by cumulus parameterizations , 1993 .

[30]  S. Freitas,et al.  A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling , 2013 .

[31]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[32]  A. Gassmann,et al.  Towards a new hybrid cumulus parametrization scheme for use in non‐hydrostatic weather prediction models , 2007 .

[33]  A. Betts,et al.  A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets , 1986 .

[34]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[35]  Craig S. Schwartz,et al.  Convection-Permitting Forecasts Initialized with Continuously Cycling Limited-Area 3DVAR, Ensemble Kalman Filter, and ``Hybrid'' Variational-Ensemble Data Assimilation Systems , 2013 .

[36]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[37]  Song‐You Hong,et al.  Simulation of the Summer Monsoon Rainfall over East Asia Using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions , 2014 .

[38]  Song‐You Hong,et al.  Comparison of Heavy Rainfall Mechanisms in Korea and the Central US , 2004 .

[39]  S. Ghan,et al.  A Comparison of Three Different Modeling Strategies for Evaluating Cloud and Radiation Parameterizations , 1999 .

[40]  H. Pan,et al.  Impacts of the triggering function of cumulus parameterization on warm‐season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site , 2015 .

[41]  Song-You Hong,et al.  An Evaluation of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) Data over South Korea , 2009 .

[42]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[43]  A. Arakawa,et al.  Toward unification of the multiscale modeling of the atmosphere , 2011 .