Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy

Abstract In strongly anisotropic materials the orientation-dependent fracture surface energy is a non-convex function of the crack angle. In this context, the classical Griffith model becomes ill-posed and requires a regularization. We revisit the crack kinking problem in materials with strongly anisotropic surface energies by using a variational phase-field model. The model includes in the energy functional a quadratic term on the second gradient of the phase-field. This term has a regularizing effect, energetically penalizing the crack curvature. We provide analytical formulas for the dependence of the surface energy on the crack direction and develop an open-source finite-element solver for the higher-order phase-field problem. Quantitative numerical experiments for the crack kinking problem show that the crack kinking directions observed in our phase-field simulations are in close agreement with the generalized maximum energy release rate criterion. Finally, we revisit a thermal quenching experiment in the case of slabs with strongly anisotropic surface energies. We show that the anisotropy can strongly affect the observed crack patterns, either by stabilizing straight cracks or by inducing zig-zag crack patterns. In the case of zig-zag cracks, we observe that crack kinking is always associated with an unstable propagation of a finite length add-crack in a single time-step.

[1]  T. Abinandanan,et al.  An extended Cahn-Hilliard model for interfaces with cubic anisotropy , 2001 .

[2]  R. Salganik,et al.  Brittle fracture of solids with arbitrary cracks , 1974 .

[3]  N. Mitchell,et al.  Fracture in sheets draped on curved surfaces. , 2015, Nature materials.

[4]  A. Ricoeur,et al.  Crack path prediction in rolled aluminum plates with fracture toughness orthotropy and experimental validation , 2015 .

[5]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[6]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[7]  S. Ko,et al.  Patterning by controlled cracking , 2012, Nature.

[8]  Julien Réthoré,et al.  Phase field modelling of anisotropic crack propagation , 2017 .

[9]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[10]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[11]  Masaki Sano,et al.  Instabilities of quasi-static crack patterns in quenched glass plates , 1997 .

[12]  B. Mohanty,et al.  Fracture toughness anisotropy in granitic rocks , 2008 .

[13]  Pomeau.,et al.  Crack instabilities of a heated glass strip. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Morton E. Gurtin,et al.  Interface Evolution in Three Dimensions¶with Curvature-Dependent Energy¶and Surface Diffusion:¶Interface-Controlled Evolution, Phase Transitions, Epitaxial Growth of Elastic Films , 2002 .

[15]  John D. Clayton,et al.  A geometrically nonlinear phase field theory of brittle fracture , 2014, International Journal of Fracture.

[16]  M. Arroyo,et al.  A variational model of fracture for tearing brittle thin sheets , 2018, Journal of the Mechanics and Physics of Solids.

[17]  J. Métois,et al.  Anisotropy of the surface thermodynamic properties of silicon , 2008 .

[18]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[19]  Bin Li,et al.  Phase‐field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy , 2015 .

[20]  Vincent Hakim,et al.  Laws of crack motion and phase-field models of fracture , 2008, 0806.0593.

[21]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[22]  Vincent Hakim,et al.  Crack path prediction in anisotropic brittle materials. , 2005, Physical review letters.

[23]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[24]  Irene Fonseca,et al.  Lower semicontinuity of surface energies , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  B. Bourdin Numerical implementation of the variational formulation for quasi-static brittle fracture , 2007 .

[26]  José Bico,et al.  Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the Wulff plot. , 2013, Physical review letters.

[27]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[28]  Ricardo G. Durán,et al.  On mixed finite element methods for the Reissner-Mindlin plate model , 1992 .

[29]  Morton E. Gurtin,et al.  A regularized equation for anisotropic motion-by-curvature , 1992 .

[30]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[31]  Peter W Voorhees,et al.  A phase-field model for highly anisotropic interfacial energy , 2001 .

[32]  F. Corson,et al.  Thermal fracture as a framework for quasi-static crack propagation , 2008, 0801.2101.

[33]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[34]  Hussain,et al.  Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II , 1974 .

[35]  A. Ball,et al.  The tensile fracture of quartz crystals , 1976 .

[36]  Benoit Roman,et al.  Fracture path in brittle thin sheets: a unifying review on tearing , 2013, International Journal of Fracture.

[37]  M. Marder Cracks cleave crystals , 2004, cond-mat/0403159.

[38]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[39]  W. G. Knauss,et al.  II – On the Problem of Crack Extension in Brittle Solids Under General Loading , 1978 .

[40]  K. Ravi-Chandar,et al.  Crack path instabilities in a quenched glass plate , 2001 .

[41]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[42]  Jeremy Bleyer,et al.  Phase-field modeling of anisotropic brittle fracture including several damage mechanisms , 2018, Computer Methods in Applied Mechanics and Engineering.

[43]  M. Sano,et al.  Transition between crack patterns in quenched glass plates , 1993, Nature.

[44]  Yoshikazu Giga,et al.  On anisotropy and curvature effects for growing Crystals , 2000 .

[45]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[46]  A. Ricoeur,et al.  Anisotropic fracture properties and crack path prediction in glass and cellulose fiber reinforced composites , 2017 .

[47]  Supriyo Ghosh,et al.  Interphase anisotropy effects on lamellar eutectics: a numerical study. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Patrick E. Farrell,et al.  Linear and nonlinear solvers for variational phase‐field models of brittle fracture , 2015, 1511.08463.

[49]  E. Cerda,et al.  Tearing as a test for mechanical characterization of thin adhesive films. , 2008, Nature materials.

[50]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[51]  John Lowengrub,et al.  Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  E. Cerda,et al.  Spiral tearing of thin films , 2013 .

[53]  Matteo Focardi,et al.  ON THE VARIATIONAL APPROXIMATION OF FREE-DISCONTINUITY PROBLEMS IN THE VECTORIAL CASE , 2001 .

[54]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[55]  J. Marigo,et al.  An overview of the modelling of fracture by gradient damage models , 2016 .

[56]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[57]  Stéphane Bordas,et al.  Simple and extensible plate and shell finite element models through automatic code generation tools , 2018, Computers & Structures.

[58]  Masahiro Ichikawa,et al.  A critical analysis of the relationship between the energy release rate and the stress intensity factors for non-coplanar crack extension under combined mode loading , 1982 .

[59]  Thomas J. R. Hughes,et al.  A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework , 2014 .

[60]  Morton E. Gurtin,et al.  Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving , 1998 .

[61]  J. Leblond,et al.  Crack paths in plane situations-II. Detailed form of the expansion of the stress intensity factors. , 1992 .

[62]  J. Vincent,et al.  Anisotropy in the fracture properties of apple flesh as investigated by crack-opening tests , 1993 .

[63]  Sia Nemat-Nasser,et al.  Experimental Observations and Computational Modeling of Fracturing in an Anisotropic Brittle Crystal (Sapphire) , 1998 .

[64]  F. Ebrahimi,et al.  Fracture anisotropy in silicon single crystal , 1999 .

[65]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[66]  Antonin Chambolle,et al.  When and how do cracks propagate? , 2009, Journal of the Mechanics and Physics of Solids.

[67]  Francisco Melo,et al.  The tearing path in a thin anisotropic sheet from two pulling points: Wulff's view. , 2016, Soft matter.

[68]  R. Bradt,et al.  Cleavage of Ceramic and Mineral Single Crystals , 1992 .

[69]  Robert D Deegan,et al.  Wavy and rough cracks in silicon. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Robert F. Sekerka,et al.  Analytical criteria for missing orientations on three-dimensional equilibrium shapes , 2005 .

[71]  Axel Voigt,et al.  A new phase-field model for strongly anisotropic systems , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Marc Kamlah,et al.  An assessment of the phase field formulation for crack growth , 2015 .

[73]  Martin Burger,et al.  Second-Order Edge-Penalization in the Ambrosio-Tortorelli functional , 2015, Multiscale Model. Simul..