On blow-up criteria for a new Hall-MHD system

This paper investigates a new Hall-MHD system in R 3 . Besides local well-posedness for strong solutions and global existences for weak solutions, some blow-up criteria are established.

[1]  Ahmed Alsaedi,et al.  On strong solutions to the compressible Hall-magnetohydrodynamic system , 2015 .

[2]  Dongho Chae,et al.  On the temporal decay for the Hall-magnetohydrodynamic equations , 2013, 1302.4601.

[3]  Ahmed Alsaedi,et al.  A Regularity Criterion for the Density-Dependent Hall-Magnetohydrodynamics , 2015 .

[4]  Pierre Degond,et al.  Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system , 2011 .

[5]  Takayoshi Ogawa,et al.  The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations , 2002 .

[6]  H. Matsumoto,et al.  Rapid magnetic reconnection in the Earth’s magnetosphere mediated by whistler waves , 2001, Nature.

[7]  Yong Zhou,et al.  On global existence, energy decay and blow-up criteria for the Hall-MHD system , 2015 .

[8]  Dongho Chae,et al.  On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics , 2013, 1305.4681.

[9]  Gen Nakamura,et al.  Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations , 2013, Appl. Math. Lett..

[10]  Zhiwei Ma,et al.  Hall magnetohydrodynamic reconnection: The Geospace Environment Modeling challenge , 2001 .

[11]  TAKAYOSHI OGAWA,et al.  Sharp Sobolev Inequality of Logarithmic Type and the Limiting Regularity Condition to the Harmonic Heat Flow , 2003, SIAM J. Math. Anal..

[12]  Dongho Chae,et al.  Singularity formation for the incompressible Hall-MHD equations without resistivity , 2013, 1312.5519.

[13]  Paolo Corti Stable Numerical Scheme for the Magnetic Induction Equation with Hall Effect , 2011 .

[14]  Yong Zhou,et al.  On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects , 2015 .

[15]  Yong Zhou,et al.  Regularity criteria for the incompressible Hall‐MHD system , 2015 .

[16]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[17]  H. Triebel Theory Of Function Spaces , 1983 .

[18]  Pierre Degond,et al.  Well-posedness for Hall-magnetohydrodynamics , 2012, 1212.3919.

[19]  Qionglei Chen,et al.  Existence theorem and blow-up criterion of the strong solutions to the two-fluid MHD equation in R3 , 2006, math/0611165.