Combinatoire des identites sur les polynomes orthogonaux
暂无分享,去创建一个
[1] Dominique Foata,et al. Modèles Combinatoires pour les Polynômes de Meixner , 1983, Eur. J. Comb..
[2] John Riordan,et al. Introduction to Combinatorial Analysis , 1959 .
[3] Josef Hofbauer,et al. A short proof of the Lagrange-Good formula , 1979, Discret. Math..
[4] George E. Andrews,et al. Identities in combinatorics III: Further aspects of ordered set sorting , 1984, Discret. Math..
[5] D. Foata,et al. Polynômes de Jacobi, interprétation combinatoire et fonction génératrice , 1983 .
[6] R. Askey. Orthogonal Polynomials and Special Functions , 1975 .
[7] Edward A. Bender,et al. THE ENUMERATIVE USES OF GENERATING FUNCTIONS. , 1969 .
[8] Gilbert Labelle,et al. Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .
[9] Dominique Foata,et al. Some Hermite polynomial identities and their combinatorics , 1981 .
[10] G. Rota,et al. Finite operator calculus , 1975 .
[11] A. Erdélyi. Transformation einer gewissen nach Produkten konfluenter hypergeometrischer Funktionen fortschreitenden Reihe , 1939 .
[12] S. A. Joni,et al. A new expression for umbral operators and power series inversion , 1977 .
[13] Ira M. Gessel,et al. A Factorization for Formal Laurent Series and Lattice Path Enumeration , 1980, J. Comb. Theory A.
[14] Ira M. Gessel,et al. A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .
[15] Mourad E. H. Ismail,et al. A -umbral calculus , 1981 .
[16] D. Foata,et al. Theorie Geometrique des Polynomes Euleriens , 1970 .
[17] R. Askey. Jacobi’s generating function for Jacobi polynomials , 1978 .
[18] Dominique Dumont,et al. Une approche combinatoire des fonctions elliptiques de Jacobi , 1981 .
[19] Philippe Flajolet. Combinatorial aspects of continued fractions , 1980, Discret. Math..
[20] Ira M. Gessel,et al. Strange Evaluations of Hypergeometric Series , 1982 .
[21] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[22] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[23] Dominique Foata,et al. A Combinatorial Proof of the Mehler Formula , 1978, J. Comb. Theory A.