Combinatoire des identites sur les polynomes orthogonaux

An improved reinforced flexible printed wiring board is disclosed. The reinforcement in this printed wiring board is composed of a fabric woven from a yarn of plied continuous filaments of polyester and glass. The fabric is impregnated with an appropriate resin which is subsequently cured. This printed wiring board is found to have improved mechanical and thermal characteristics with little degradation in electrical properties.

[1]  Dominique Foata,et al.  Modèles Combinatoires pour les Polynômes de Meixner , 1983, Eur. J. Comb..

[2]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[3]  Josef Hofbauer,et al.  A short proof of the Lagrange-Good formula , 1979, Discret. Math..

[4]  George E. Andrews,et al.  Identities in combinatorics III: Further aspects of ordered set sorting , 1984, Discret. Math..

[5]  D. Foata,et al.  Polynômes de Jacobi, interprétation combinatoire et fonction génératrice , 1983 .

[6]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[7]  Edward A. Bender,et al.  THE ENUMERATIVE USES OF GENERATING FUNCTIONS. , 1969 .

[8]  Gilbert Labelle,et al.  Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .

[9]  Dominique Foata,et al.  Some Hermite polynomial identities and their combinatorics , 1981 .

[10]  G. Rota,et al.  Finite operator calculus , 1975 .

[11]  A. Erdélyi Transformation einer gewissen nach Produkten konfluenter hypergeometrischer Funktionen fortschreitenden Reihe , 1939 .

[12]  S. A. Joni,et al.  A new expression for umbral operators and power series inversion , 1977 .

[13]  Ira M. Gessel,et al.  A Factorization for Formal Laurent Series and Lattice Path Enumeration , 1980, J. Comb. Theory A.

[14]  Ira M. Gessel,et al.  A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .

[15]  Mourad E. H. Ismail,et al.  A -umbral calculus , 1981 .

[16]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[17]  R. Askey Jacobi’s generating function for Jacobi polynomials , 1978 .

[18]  Dominique Dumont,et al.  Une approche combinatoire des fonctions elliptiques de Jacobi , 1981 .

[19]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[20]  Ira M. Gessel,et al.  Strange Evaluations of Hypergeometric Series , 1982 .

[21]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[22]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[23]  Dominique Foata,et al.  A Combinatorial Proof of the Mehler Formula , 1978, J. Comb. Theory A.