Palatini formulation for gauge theory: implications for slow-roll inflation

We consider a formulation of gauge field theory where the gauge field A α and the field strength F αβ are independent variables, as in the Palatini formulation of gravity. For the simplest gauge field action, this is known to be equivalent to the usual formulation. We add non-minimal couplings between F αβ and a scalar field, solve for F αβ and insert it back into the action. This leads to modified gauge field and scalar field terms. We consider slow-roll inflation and show that because of the modifications to the scalar sector, adding higher order terms to the inflaton potential does not spoil its flatness, unlike in the usual case. Instead it makes the effective potential closer to quadratic.

[1]  R. W. Ogburn,et al.  Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. , 2021, Physical review letters.

[2]  S. Räsänen,et al.  Inflation with R (αβ) terms in the Palatini formulation , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  M. Shaposhnikov,et al.  Einstein-Cartan Portal to Dark Matter. , 2020, Physical review letters.

[4]  M. Shaposhnikov,et al.  Higgs inflation in Einstein-Cartan gravity , 2020, Journal of Cosmology and Astroparticle Physics.

[5]  S. Räsänen,et al.  Higgs inflation with the Holst and the Nieh–Yan term , 2020, Physical Review D.

[6]  Jaakko Annala Higgs inflation and higher-order gravity in Palatini formulation , 2020, 2106.09438.

[7]  S. Park,et al.  Higgs inflation in metric and Palatini formalisms: required suppression of higher dimensional operators , 2019, Journal of Cosmology and Astroparticle Physics.

[8]  S. Räsänen Higgs inflation in the Palatini formulation with kinetic terms for the metric , 2018, The Open Journal of Astrophysics.

[9]  Fedor Bezrukov,et al.  On the robustness of the primordial power spectrum in renormalized Higgs inflation , 2017, 1706.05007.

[10]  E. Orazi,et al.  The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields , 2017 .

[11]  M. Postma,et al.  UV (in)sensitivity of Higgs inflation , 2016, 1602.07234.

[12]  W. Trageser Einheitliche Feldtheorie von Gravitation und Elektrizität , 2016 .

[13]  M. Shaposhnikov,et al.  Inflation, LHC and the Higgs boson , 2015 .

[14]  Damien P. George,et al.  Quantum corrections in Higgs inflation: the Standard Model case , 2015, 1508.04660.

[15]  J. Rubio Higgs inflation and vacuum stability , 2015, 1502.07952.

[16]  M. Shaposhnikov,et al.  Living beyond the edge: Higgs inflation and vacuum metastability , 2014, 1412.3811.

[17]  Damien P. George,et al.  Quantum corrections in Higgs inflation: the real scalar case , 2013, 1310.2157.

[18]  Fedor Bezrukov The Higgs field as an inflaton , 2013, 1307.0708.

[19]  R. Durrer,et al.  Cosmological magnetic fields: their generation, evolution and observation , 2013 .

[20]  R. Durrer,et al.  Cosmological Magnetic Fields: Their Generation, Evolution and Observation , 2013, 1303.7121.

[21]  G. Olmo Palatini Approach to Modified Gravity: f(R) Theories and Beyond , 2011, 1101.3864.

[22]  M. Shaposhnikov,et al.  Higgs inflation: consistency and generalisations , 2010, 1008.5157.

[23]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[24]  F. Bauer,et al.  Inflation with non-minimal coupling: Metric vs. Palatini formulations , 2008, 0803.2664.

[25]  M. Shaposhnikov,et al.  The Standard Model Higgs boson as the inflaton , 2007, 0710.3755.

[26]  S. Liberati,et al.  Metric-affine f(R) theories of gravity , 2006, gr-qc/0604006.

[27]  V. Mukhanov,et al.  Perturbations in k-inflation , 1999, hep-th/9904176.

[28]  K. Maeda,et al.  Equivalence of black hole thermodynamics between a generalized theory of gravity and the Einstein theory , 1998, gr-qc/9803086.

[29]  R. Jackiw,et al.  Hamiltonian reduction of unconstrained and constrained systems. , 1988, Physical review letters.

[30]  M. Francaviglia,et al.  Nonlinear gravitational Lagrangians , 1987 .

[31]  Shahid-Saless First-order formalism treatment of R+R2 gravity. , 1987, Physical review. D, Particles and fields.

[32]  M. Francaviglia,et al.  Variational formulation of general relativity from 1915 to 1925 “Palatini's method” discovered by Einstein in 1925 , 1982 .

[33]  L. Faddeev The Feynman integral for singular Lagrangians , 1969 .