Overview of Process Fault Diagnosis

This overview of process fault diagnosis concentrates on steady-state processes, continuous dynamic processes and batch processes. In steady-state processes, the classic linear model for process fault diagnosis based on the use of principal component analysis is discussed in some detail, followed by extensions of this model to nonlinear steady-state (non)Gaussian processes. These extensions include higher-order statistical models, such as based on the use of independent components, the use of principal curves and surfaces as well as neural networks as nonlinear extensions of principal component analysis. Likewise, innovations and applications of kernel methods are among other considered, including kernel principal component analysis, kernel partial least squares, kernel independent component analysis as well as multiple kernel learning variants of some of these approaches. Continuous dynamic processes are considered in terms of manifold models, adaptive methods and phase space methods, where the application of process diagnostics, such as correlation dimension and recurrence quantitative analyses, has been proposed. The multitude of recent developments in batch processing are similarly reviewed in terms of the multiway principal component model, extended to multiphase and multiblock models. These developments are considered in the broad framework outlined in Chap. 1.

[1]  Age K. Smilde,et al.  Statistical batch process monitoring using gray models , 2005 .

[2]  Rajagopalan Srinivasan,et al.  Phase-based supervisory control for fermentation process development , 2003 .

[3]  Shufeng Tan,et al.  Reducing data dimensionality through optimizing neural network inputs , 1995 .

[4]  Theodora Kourti,et al.  Statistical Process Control of Multivariate Processes , 1994 .

[5]  Yi Cao,et al.  Nonlinear Dynamic Process Monitoring Using Canonical Variate Analysis and Kernel Density Estimations , 2010, IEEE Transactions on Industrial Informatics.

[6]  Xu Zhao,et al.  Nonlinear On-line Process Monitoring and Fault Detection Based on Kernel ICA , 2006, 2006 International Conference on Information and Automation.

[7]  Chris Aldrich,et al.  Analysis of electrochemical noise data with phase space methods , 2006 .

[8]  Xuejin Gao,et al.  Enhanced batch process monitoring and quality prediction using multi-phase dynamic PLS , 2011, Proceedings of the 30th Chinese Control Conference.

[9]  Junghui Chen,et al.  Performance monitoring of MPCA-based control for multivariable batch control processes , 2010 .

[10]  Jie Zhang,et al.  Process monitoring using non-linear statistical techniques , 1997 .

[11]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[12]  B. Kulkarni,et al.  Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN) , 2004 .

[13]  Jesús Picó,et al.  Multi-phase principal component analysis for batch processes modelling , 2006 .

[14]  Ruey-Shiang Guh,et al.  An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts , 2008, Comput. Ind. Eng..

[15]  Vladimir Jotsov,et al.  First International IEEE Symposium on Intelligent Systems , 2003 .

[16]  Junghui Chen,et al.  Derivation of function space analysis based PCA control charts for batch process monitoring , 2001 .

[17]  M. Marseguerra,et al.  The AutoAssociative Neural Network in signal analysis: II. Application to on-line monitoring of a simulated BWR component , 2005 .

[18]  Furong Gao,et al.  A survey on multistage/multiphase statistical modeling methods for batch processes , 2009, Annu. Rev. Control..

[19]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[20]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[21]  Jie Xu,et al.  Combining KPCA with Sparse SVM for Nonlinear Process Monitoring , 2010, 2010 Asia-Pacific Power and Energy Engineering Conference.

[22]  Ali Cinar,et al.  Statistical monitoring of multistage, multiphase batch processes , 2002 .

[23]  Seongkyu Yoon,et al.  Principal‐component analysis of multiscale data for process monitoring and fault diagnosis , 2004 .

[24]  Ying-wei Zhang,et al.  Improved multi-scale kernel principal component analysis and its application for fault detection , 2012 .

[25]  John F. MacGregor,et al.  Multi-way partial least squares in monitoring batch processes , 1995 .

[26]  Furong Gao,et al.  Batch process monitoring based on support vector data description method , 2011 .

[27]  A. Simoglou,et al.  Dynamic modelling of the voltage response of direct methanol fuel cells and stacks Part I: Model development and validation , 2001 .

[28]  Manabu Kano,et al.  Evolution of multivariate statistical process control: application of independent component analysis and external analysis , 2004, Comput. Chem. Eng..

[29]  Chih-Chou Chiu,et al.  Statistical process monitoring using independent component analysis based disturbance separation scheme , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[30]  David Malah,et al.  Speech enhancement using a minimum mean-square error log-spectral amplitude estimator , 1984, IEEE Trans. Acoust. Speech Signal Process..

[31]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[32]  A. Ben Hamza,et al.  Statistical process control using kernel PCA , 2007, 2007 Mediterranean Conference on Control & Automation.

[33]  In-Beum Lee,et al.  Nonlinear dynamic process monitoring based on dynamic kernel PCA , 2004 .

[34]  Aapo Hyvärinen,et al.  An alternative approach to infomax and independent component analysis , 2002, Neurocomputing.

[35]  F. Itakura,et al.  Minimum prediction residual principle applied to speech recognition , 1975 .

[36]  E. García-Ochoa,et al.  Assessment of the dynamics of corrosion fatigue crack initiation applying recurrence plots to the analysis of electrochemical noise data , 2008 .

[37]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[38]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part III: Process history based methods , 2003, Comput. Chem. Eng..

[39]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[40]  Da-Hai Xia,et al.  Determination of corrosion types from electrochemical noise by phase space reconstruction theory , 2012 .

[41]  John F. MacGregor,et al.  Adaptive batch monitoring using hierarchical PCA , 1998 .

[42]  Jesús Picó,et al.  Online monitoring of batch processes using multi-phase principal component analysis , 2006 .

[43]  Dorothy E. Denning,et al.  An Intrusion-Detection Model , 1987, IEEE Transactions on Software Engineering.

[44]  Julian Morris,et al.  Dynamic model-based batch process monitoring , 2008 .

[45]  George W. Irwin,et al.  Improved principal component monitoring of large-scale processes , 2004 .

[46]  Venkat Venkatasubramanian,et al.  Dynamic process monitoring and fault detection in a batch fermentation process , 2011 .

[47]  A. J. Morris,et al.  Wavelets and non-linear principal components analysis for process monitoring , 1999 .

[48]  A. J. Morris,et al.  Non-linear principal components analysis for process fault detection , 1998 .

[49]  Barry M. Wise,et al.  The process chemometrics approach to process monitoring and fault detection , 1995 .

[50]  Jesús Picó,et al.  Data understanding with PCA: Structural and Variance Information plots , 2010 .

[51]  Peter A Vanrolleghem,et al.  Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor. , 2005, Journal of biotechnology.

[52]  C. S. Cox,et al.  Performance Improvements at Surface Water Treatment Works Using ANN-Based Automation Schemes , 2000 .

[53]  William Johns,et al.  Computer‐Aided Chemical Engineering , 2011 .

[54]  Tao Chen,et al.  Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information , 2010 .

[55]  Henrik Rasmussen,et al.  Nonlinear superheat and capacity control of a refrigeration plant , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[56]  Fuli Wang,et al.  Nonlinear process monitoring based on kernel dissimilarity analysis , 2009 .

[57]  Yingwei Zhang,et al.  Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM , 2009 .

[58]  Fabio Del Frate,et al.  Autoassociative neural networks for features reduction of hyperspectral data , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[59]  A. Ben Hamza,et al.  Dynamic independent component analysis approach for fault detection and diagnosis , 2010, Expert Syst. Appl..

[60]  Jingqi Yuan,et al.  Multivariate statistical process control based on multiway locality preserving projections , 2008 .

[61]  Jie Xu,et al.  Nonlinear Process Monitoring and Fault Diagnosis Based on KPCA and MKL-SVM , 2010, 2010 International Conference on Artificial Intelligence and Computational Intelligence.

[62]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[63]  S. H. Fourie,et al.  Advanced process monitoring using an on-line non-linear multiscale principal component analysis methodology , 2000 .

[64]  Fuli Wang,et al.  On-line batch process monitoring using batch dynamic kernel principal component analysis , 2010 .

[65]  P. A. Taylor,et al.  Synchronization of batch trajectories using dynamic time warping , 1998 .

[66]  Min-Sen Chiu,et al.  Nonlinear process monitoring using JITL-PCA , 2005 .

[67]  In-Beum Lee,et al.  Fault detection and diagnosis based on modified independent component analysis , 2006 .

[68]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[69]  Chris Aldrich,et al.  CHARACTERIZATION OF FLOTATION PROCESSES WITH SELF-ORGANIZING NEURAL NETS , 1995 .

[70]  Lei Xie,et al.  Fault detection for batch process based on dissimilarity index , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[71]  Chris Aldrich,et al.  Visualization of process data by use of evolutionary computation , 2001 .

[72]  G.W. Irwin,et al.  Industrial process monitoring using nonlinear principal component models , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[73]  George W. Irwin,et al.  Improved fault diagnosis in multivariate systems using regression-based reconstruction , 2009 .

[74]  In-Beum Lee,et al.  Adaptive monitoring statistics based on state space updating using canonical variate analysis , 2006 .

[75]  Manabu Kano,et al.  Monitoring independent components for fault detection , 2003 .

[76]  Chris Aldrich,et al.  Kernel-based fault diagnosis on mineral processing plants , 2006 .

[77]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[78]  M. F. Augusteijn,et al.  Neural network classification and novelty detection , 2002 .

[79]  A Method for Flame Flicker Frequency Calculation with the Empirical Mode Decomposition , 2011, 2011 Third International Conference on Measuring Technology and Mechatronics Automation.

[80]  Pierantonio Facco,et al.  MULTIVARIATE STATISTICAL ESTIMATION OF PRODUCT QUALITY IN THE INDUSTRIAL BATCH PRODUCTION OF A RESIN , 2007 .

[81]  Julian Morris,et al.  On-line monitoring of a sugar crystallization process , 2005, Comput. Chem. Eng..

[82]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[83]  Francesca Bovolo,et al.  A support vector domain method for change detection in multitemporal images , 2010, Pattern Recognit. Lett..

[84]  A. Basso Autoassociative neural networks for image compression: a massively parallel implementation , 1992, Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop.

[85]  M. Vermasvuori,et al.  The use of Kohonen self-organizing maps in process monitoring , 2002, Proceedings First International IEEE Symposium Intelligent Systems.

[86]  Jesús Picó,et al.  Multi‐phase analysis framework for handling batch process data , 2008 .

[87]  Xue Z. Wang,et al.  Multivariate statistical batch process monitoring using dynamic independent component analysis , 2006 .

[88]  Joydeep Ghosh,et al.  A Unified Model for Probabilistic Principal Surfaces , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[89]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[90]  Yingwei Zhang,et al.  Multivariate process monitoring and analysis based on multi-scale KPLS , 2011 .

[91]  Fuli Wang,et al.  PCA-Based Modeling and On-line Monitoring Strategy for Uneven-Length Batch Processes , 2004 .

[92]  ChangKyoo Yoo,et al.  On-line monitoring of batch processes using multiway independent component analysis , 2004 .

[93]  In-Beum Lee,et al.  Enhanced process monitoring of fed-batch penicillin cultivation using time-varying and multivariate statistical analysis. , 2004, Journal of biotechnology.

[94]  Jie Yu A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes , 2012 .

[95]  José Ragot,et al.  Nonlinear PCA combining principal curves and RBF-networks for process monitoring , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[96]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[97]  Fuli Wang,et al.  Adaptive Monitoring Based on Independent Component Analysis for Multiphase Batch Processes with Limited Modeling Data , 2008 .

[98]  Jianming Zhang,et al.  Investigation of Dynamic Multivariate Chemical Process Monitoring , 2006 .

[99]  Furong Gao,et al.  Statistical analysis and online monitoring for handling multiphase batch processes with varying durations , 2011 .

[100]  John F. MacGregor,et al.  Multivariate SPC charts for monitoring batch processes , 1995 .

[101]  Yongsheng Qi,et al.  Enhanced batch process monitoring and quality prediction based on multi-phase multi-way partial least squares , 2010, 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[102]  Karlene A. Kosanovich,et al.  Improved Process Understanding Using Multiway Principal Component Analysis , 1996 .

[103]  Yu Qian,et al.  Process monitoring based on wavelet packet principal component analysis , 2003 .

[104]  J. Carstensen,et al.  Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping , 1998 .

[105]  Feng Zhang,et al.  Bayesian neural networks for nonlinear multivariate manufacturing process monitoring , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[106]  A. Çinar,et al.  PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space , 1997 .

[107]  A. J. Morris,et al.  Statistical performance monitoring of dynamic multivariate processes using state space modelling , 2002 .

[108]  Carlos F. Alcala,et al.  Reconstruction-based contribution for process monitoring with kernel principal component analysis , 2010, Proceedings of the 2010 American Control Conference.

[109]  Chris Aldrich,et al.  Monitoring of metallurgical process plants by using biplots , 2004 .

[110]  G. Irwin,et al.  Improved process monitoring using nonlinear principal component models , 2008 .

[111]  Chris Aldrich,et al.  Visualisation of plant disturbances using self-organising maps , 1996 .

[112]  Fabio Del Frate,et al.  Dimensionality reduction of hyperspectral data: Assessing the performance of Autoassociative Neural Networks , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[113]  Mabel C. Sánchez,et al.  Batch process monitoring in the original measurement's space , 2010 .

[114]  Sirish L. Shah,et al.  Fault detection and diagnosis in process data using one-class support vector machines , 2009 .

[115]  J. Macgregor,et al.  Analysis of multiblock and hierarchical PCA and PLS models , 1998 .

[116]  S. Joe Qin,et al.  Fault Detection of Nonlinear Processes Using Multiway Kernel Independent Component Analysis , 2007 .

[117]  C Rosen,et al.  Multivariate and multiscale monitoring of wastewater treatment operation. , 2001, Water research.

[118]  Risto Miikkulainen,et al.  Intrusion Detection with Neural Networks , 1997, NIPS.

[119]  David J. Hill,et al.  Anomaly detection in streaming environmental sensor data: A data-driven modeling approach , 2010, Environ. Model. Softw..

[120]  A. Höskuldsson,et al.  Multivariate statistical analysis of a multi-step industrial processes. , 2007, Analytica chimica acta.

[121]  Rajagopalan Srinivasan,et al.  Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control , 2008, Comput. Chem. Eng..

[122]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[123]  Elif Derya Übeyli,et al.  Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks , 2004, Eng. Appl. Artif. Intell..

[124]  Ivan Prebil,et al.  Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method , 2011 .

[125]  Jie Xu,et al.  Fault Detection for Process Monitoring Using Improved Kernel Principal Component Analysis , 2009, 2009 International Conference on Artificial Intelligence and Computational Intelligence.

[126]  John F. MacGregor,et al.  Multivariate monitoring of batch processes using batch‐to‐batch information , 2004 .

[127]  George W. Irwin,et al.  Improved Nonlinear PCA for Process Monitoring Using Support Vector Data Description , 2011 .

[128]  Zhiqiang Ge,et al.  Two-dimensional Bayesian monitoring method for nonlinear multimode processes , 2011 .

[129]  Ping Wu,et al.  Online dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA) process , 2006 .

[130]  Frans van den Berg,et al.  Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data , 2004 .

[131]  Michael J. Piovoso,et al.  On unifying multiblock analysis with application to decentralized process monitoring , 2001 .

[132]  Claus Weihs,et al.  Variable window adaptive Kernel Principal Component Analysis for nonlinear nonstationary process monitoring , 2011, Comput. Ind. Eng..

[133]  Jun Chen,et al.  An arc stability evaluation approach for SW AC SAW based on Lyapunov exponent of welding current , 2013 .

[134]  X. Wang,et al.  Statistical Process Control Charts for Batch Operations Based on Independent Component Analysis , 2004 .

[135]  In-Beum Lee,et al.  Multiblock PLS-based localized process diagnosis , 2005 .

[136]  A. Legat,et al.  Chaotic Analysis of Electrochemical Noise Measured on Stainless Steel , 1995 .

[137]  S. Qin Recursive PLS algorithms for adaptive data modeling , 1998 .

[138]  Furong Gao,et al.  Subspace identification for two-dimensional dynamic batch process statistical monitoring , 2008 .

[139]  Zhiqiang Ge,et al.  A distribution-free method for process monitoring , 2011, Expert Syst. Appl..

[140]  L. Buydens,et al.  Nonlinear process monitoring using bottle-neck neural networks , 2001 .

[141]  Dong Dong,et al.  Nonlinear principal component analysis-based on principal curves and neural networks , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[142]  Fouad Teymour,et al.  Batch process monitoring and its application to polymerization systems , 2004 .

[143]  Xu Zhao,et al.  On-line Batch Process Monitoring and Diagnosing Based on Fisher Discriminant Analysis , 2006 .

[144]  Theodora Kourti,et al.  Analysis, monitoring and fault diagnosis of batch processes using multiblock and multiway PLS , 1995 .

[145]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[146]  Tian Xuemin,et al.  A fault detection method using multi-scale kernel principal component analysis , 2008, 2008 27th Chinese Control Conference.

[147]  Gang Rong,et al.  Fault Isolation by Partial Dynamic Principal Component Analysis in Dynamic Process , 2006 .

[148]  F. Casciati,et al.  Structural health monitoring by Lyapunov exponents of non‐linear time series , 2006 .

[149]  C. W. Frey Monitoring of complex industrial processes based on self-organizing maps and watershed transformations , 2012, 2012 IEEE International Conference on Industrial Technology.

[150]  Richard D. Braatz,et al.  Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes , 2000 .

[151]  Venkat Venkatasubramanian,et al.  A B-spline based method for data compression, process monitoring and diagnosis , 1998 .

[152]  Age K. Smilde,et al.  Fault detection properties of global, local and time evolving models for batch process monitoring , 2005 .

[153]  David Shan-Hill Wong,et al.  Fault detection and classification for a two‐stage batch process , 2008 .

[154]  Chunhui Zhao,et al.  Dissimilarity analysis based batch process monitoring using moving windows , 2007 .

[155]  Jin Wang,et al.  Multivariate Statistical Process Monitoring Based on Statistics Pattern Analysis , 2010 .

[156]  S. de Jong,et al.  A framework for sequential multiblock component methods , 2003 .

[157]  A. J. Morris,et al.  On-Line Dynamic Process Monitoring Using Wavelet-Based Generic Dissimilarity Measure , 2005 .

[158]  Junghui Chen,et al.  Dynamic process fault monitoring based on neural network and PCA , 2002 .

[159]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[160]  Markus A. Reuter,et al.  Monitoring of metallurgical reactors by the use of topographic mapping of process data , 1999 .

[161]  G. Rong,et al.  Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis , 2009 .

[162]  Manabu Kano,et al.  Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem , 2002 .

[163]  J.F. MacGregor,et al.  Multi-way PCA applied to an industrial batch process , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[164]  Junghui Chen,et al.  On-line batch process monitoring using MHMT-based MPCA , 2006 .

[165]  Hiroshi Shimizu,et al.  On-line fault diagnosis for optimal rice α-amylase production process of a temperature-sensitive mutant of Saccharomyces cerevisiae by an autoassociative neural network , 1997 .

[166]  Zhiqiang Ge,et al.  Online batch process monitoring based on multi-model ICA-PCA method , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[167]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[168]  Age K. Smilde,et al.  Improved monitoring of batch processes by incorporating external information , 2002 .

[169]  Manabu Kano,et al.  A new multivariate statistical process monitoring method using principal component analysis , 2001 .

[170]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[171]  Chun-Chin Hsu,et al.  A novel process monitoring approach with dynamic independent component analysis , 2010 .

[172]  Geok Soon Hong,et al.  Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results , 2009 .

[173]  E. C. Malthouse,et al.  Limitations of nonlinear PCA as performed with generic neural networks , 1998, IEEE Trans. Neural Networks.

[174]  Max Donath,et al.  American Control Conference , 1993 .

[175]  Sanyuan Zhang,et al.  Nonlinear Process Monitoring Based on Improved Kernel ICA , 2006, 2006 International Conference on Computational Intelligence and Security.

[176]  Xiaoling Zhang,et al.  Multiway kernel independent component analysis based on feature samples for batch process monitoring , 2009, Neurocomputing.

[177]  Si-Zhao Joe Qin,et al.  Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..

[178]  Yuan Yao,et al.  Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes , 2009 .

[179]  Chris Aldrich,et al.  Change point detection in time series data with random forests , 2010 .

[180]  Chris Aldrich,et al.  Monitoring and control of hydrometallurgical processes with self-organizing and adaptive neural net systems , 1995 .

[181]  Li Wang,et al.  Multivariate statistical process monitoring using an improved independent component analysis , 2010 .

[182]  A. Mees,et al.  Dynamics from multivariate time series , 1998 .

[183]  Hong Zhou,et al.  Decentralized Fault Diagnosis of Large-Scale Processes Using Multiblock Kernel Partial Least Squares , 2010, IEEE Transactions on Industrial Informatics.

[184]  Ignacio E. Grossmann,et al.  Computers and Chemical Engineering , 2014 .

[185]  Nesrin Sarigul-Klijn,et al.  Distance similarity matrix using ensemble of dimensional data reduction techniques: Vibration and aerocoustic case studies , 2009 .

[186]  Yi Cao,et al.  State-space independent component analysis for nonlinear dynamic process monitoring , 2010 .

[187]  E. García-Ochoa,et al.  Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper , 2005 .

[188]  Mohamed Limam,et al.  Support Vector Regression control charts for multivariate nonlinear autocorrelated processes , 2010 .

[189]  Mark A. Kramer,et al.  Autoassociative neural networks , 1992 .

[190]  Jeremy S. Conner,et al.  Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture , 2009 .

[191]  Sirkka-Liisa Jämsä-Jounela,et al.  A process monitoring system based on the Kohonen self-organizing maps , 2003 .

[192]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[193]  J. Westerhuis,et al.  Multivariate modelling of the pharmaceutical two‐step process of wet granulation and tableting with multiblock partial least squares , 1997 .

[194]  Chi Ma,et al.  Decentralized fault diagnosis using multiblock kernel independent component analysis , 2012 .

[195]  Julian Morris,et al.  Fault detection of dynamic processes using a simplified monitoring-specific CVA state space approach , 2009 .

[196]  Pierantonio Facco,et al.  Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals , 2009 .

[197]  Furong Gao,et al.  Stage-based process analysis and quality prediction for batch processes , 2005 .

[198]  Age K. Smilde,et al.  Critical evaluation of approaches for on-line batch process monitoring , 2002 .

[199]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .

[200]  Jin Hyun Park,et al.  Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis , 2004, Comput. Chem. Eng..

[201]  Rasmus Bro,et al.  Automated alignment of chromatographic data , 2006 .

[202]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[203]  Age K. Smilde,et al.  Monitoring of Batch Processes using Spectroscopy , 2002 .

[204]  Zhi-huan Song,et al.  Process Monitoring Based on Independent Component Analysis - Principal Component Analysis ( ICA - PCA ) and Similarity Factors , 2007 .

[205]  Xu Zhao,et al.  Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace , 2006 .

[206]  S. Joe Qin,et al.  Joint diagnosis of process and sensor faults using principal component analysis , 1998 .

[207]  Gang Rong,et al.  Nonlinear process monitoring based on maximum variance unfolding projections , 2009, Expert Syst. Appl..

[208]  Barry Lennox,et al.  Real-time monitoring of an industrial batch process , 2006, Comput. Chem. Eng..

[209]  Furong Gao,et al.  Batch Process Monitoring in Score Space of Two-Dimensional Dynamic Principal Component Analysis (PCA) , 2007 .

[210]  Furong Gao,et al.  Stage-Oriented Statistical Batch Processes Monitoring, Quality Prediction and Improvement , 2008 .

[211]  Junhong Li,et al.  Improved kernel principal component analysis for fault detection , 2008, Expert Syst. Appl..

[212]  A. J. Morris,et al.  Performance monitoring of a multi-product semi-batch process , 2001 .

[213]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[214]  Jin Hyun Park,et al.  Fault detection and identification of nonlinear processes based on kernel PCA , 2005 .

[215]  Peter A Vanrolleghem,et al.  Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. , 2003, Biotechnology and bioengineering.

[216]  Yingmin Li,et al.  Structural damage detection using empirical-mode decomposition and vector autoregressive moving average model , 2010 .

[217]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[218]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[219]  Juha Karhunen,et al.  Extending ICA for finding jointly dependent components from two related data sets , 2007, Neurocomputing.

[220]  Staffan Folestad,et al.  Real-time alignment of batch process data using COW for on-line process monitoring , 2006 .

[221]  Olli Simula,et al.  Monitoring industrial processes using the self-organizing map , 1999, SMCia/99 Proceedings of the 1999 IEEE Midnight - Sun Workshop on Soft Computing Methods in Industrial Applications (Cat. No.99EX269).

[222]  Alejandro F. Frangi,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004 .

[223]  Manabu Kano,et al.  Comparison of statistical process monitoring methods: application to the Eastman challenge problem , 2000 .

[224]  Xi Zhang,et al.  Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis , 2007 .

[225]  In-Beum Lee,et al.  Sensor fault identification based on kernel principal component analysis , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[226]  Abderrazak Chatti,et al.  Monitoring of dynamic processes by rectangular hybrid automata , 2010 .

[227]  Jesús Picó,et al.  On-line monitoring of batch processes based on PCA: does the modelling structure matter? [corrected]. , 2009, Analytica chimica acta.

[228]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[229]  T. McAvoy,et al.  Batch tracking via nonlinear principal component analysis , 1996 .

[230]  C. Posten,et al.  Supervision of bioprocesses using a dynamic time warping algorithm , 1996 .

[231]  Antti Poso,et al.  Monitoring the wetting phase of fluidized bed granulation process using multi-way methods: The separation of successful from unsuccessful batches , 2009 .

[232]  Yu Jinshou,et al.  An input-training neural network based nonlinear principal component analysis approach for fault diagnosis , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[233]  José C. Menezes,et al.  Multivariate monitoring of fermentation processes with non-linear modelling methods , 2004 .

[234]  Juan Yianatos,et al.  The long way toward multivariate predictive control of flotation processes , 2011 .

[235]  Richard D. Braatz,et al.  Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis , 2000 .

[236]  Jin Wang,et al.  Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes , 2011 .