Sum-product networks: A new deep architecture

The key limiting factor in graphical model inference and learning is the complexity of the partition function. We thus ask the question: what are the most general conditions under which the partition function is tractable? The answer leads to a new kind of deep architecture, which we call sum-product networks (SPNs) and will present in this abstract.

[1]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[2]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[3]  Geoffrey E. Hinton,et al.  A general framework for parallel distributed processing , 1986 .

[4]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[5]  Giulia Pagallo,et al.  Learning DNF by Decision Trees , 1989, IJCAI.

[6]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[7]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[8]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[9]  Radford M. Neal A new view of the EM algorithm that justifies incremental and other variants , 1993 .

[10]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[11]  L. Ryd,et al.  On bias. , 1994, Acta orthopaedica Scandinavica.

[12]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[13]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[14]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[15]  Nevin Lianwen Zhang,et al.  Hierarchical latent class models for cluster analysis , 2002, J. Mach. Learn. Res..

[16]  Adnan Darwiche,et al.  A differential approach to inference in Bayesian networks , 2000, JACM.

[17]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  Jerome H. Friedman,et al.  On Bias, Variance, 0/1—Loss, and the Curse-of-Dimensionality , 2004, Data Mining and Knowledge Discovery.

[20]  Fernando Pereira,et al.  Case-factor diagrams for structured probabilistic modeling , 2004, J. Comput. Syst. Sci..

[21]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[22]  Pedro M. Domingos,et al.  Naive Bayes models for probability estimation , 2005, ICML.

[23]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[24]  Rina Dechter,et al.  AND/OR search spaces for graphical models , 2007, Artif. Intell..

[25]  Wei Li,et al.  Mixtures of hierarchical topics with Pachinko allocation , 2007, ICML '07.

[26]  Carlos Guestrin,et al.  Efficient Principled Learning of Thin Junction Trees , 2007, NIPS.

[27]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2007, SIGGRAPH 2007.

[28]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[29]  Pedro M. Domingos,et al.  Learning Arithmetic Circuits , 2008, UAI.

[30]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[31]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[32]  Long Zhu,et al.  Unsupervised Learning of Probabilistic Grammar-Markov Models for Object Categories , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Dan Roth,et al.  Learning multi-linear representations of distributions for efficient inference , 2009, Machine Learning.

[34]  Ryan P. Adams,et al.  Learning the Structure of Deep Sparse Graphical Models , 2009, AISTATS.

[35]  Pedro M. Domingos,et al.  Learning Efficient Markov Networks , 2010, NIPS.

[36]  Pedro F. Felzenszwalb Object detection grammars , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[37]  Geoffrey E. Hinton,et al.  An Efficient Learning Procedure for Deep Boltzmann Machines , 2012, Neural Computation.