Chemical Diversity in Protoplanetary Disks and Its Impact on the Formation History of Giant Planets

Giant planets can interact with multiple and chemically diverse environments in protoplanetary disks while they form and migrate to their final orbits. The way this interaction affects the accretion of gas and solids shapes the chemical composition of the planets and of their atmospheres. Here we investigate the effects of different chemical structures of the host protoplanetary disk on the planetary composition. We consider both scenarios of molecular (inheritance from the prestellar cloud) and atomic (complete chemical reset) initial abundances in the disk. We focus on four elemental tracers of different volatility: C, O, N, and S. We explore the entire extension of possible formation regions suggested by observations by coupling the disk chemical scenarios with N-body simulations of forming and migrating giant planets. The planet formation process produces giant planets with chemical compositions significantly deviating from that of the host disk. We find that the C/N, N/O, and S/N ratios follow monotonic trends with the extent of migration. The C/O ratio shows a more complex behavior, dependent on the planet accretion history and on the chemical structure of the formation environment. The comparison between S/N* and C/N* (where * indicates normalization to the stellar value), constrains the relative contribution of gas and solids to the total metallicity. Giant planets whose metallicity is dominated by the contribution of the gas are characterized by N/O* > C/O* > C/N* and allow to constrain the disk chemical scenario. When the planetary metallicity is instead dominated by the contribution of the solids we find that C/N* > C/O* > N/O*.

[1]  Antonino Francesco Lanza,et al.  The GAPS Programme at TNG XXXIX. Multiple Molecular Species in the Atmosphere of the Warm Giant Planet WASP-80 b Unveiled at High Resolution with GIANO-B , 2022, The Astronomical Journal.

[2]  A. Bonomo,et al.  The GAPS Programme at TNG. XXXV. Fundamental properties of transiting exoplanet host stars , 2022, Astronomy & Astrophysics.

[3]  M. Tsantaki,et al.  Ariel stellar characterisation. I. Homogeneous stellar parameters of 187 FGK planet host stars: Description and validation of the method , 2022, Astronomy & Astrophysics.

[4]  Timothy D. Brandt,et al.  Images of embedded Jovian planet formation at a wide separation around AB Aurigae , 2022, Nature Astronomy.

[5]  L. Testi,et al.  Dust Resurgence in Protoplanetary Disks Due to Planetesimal–Planet Interactions , 2022, The Astrophysical Journal Letters.

[6]  L. Testi,et al.  The protoplanetary disk population in the rho-Ophiuchi region L1688 and the time evolution of Class II YSOs , 2022, Astronomy & Astrophysics.

[7]  Jared R. Kolecki,et al.  Measuring Elemental Abundances of JWST Target Stars for Exoplanet Characterization. I. FGK Stars , 2021, The Astronomical Journal.

[8]  M. Min,et al.  Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra Indication of disequilibrium chemistry for HD 209458b and WASP-39b , 2021, Astronomy & Astrophysics.

[9]  S. Molinari,et al.  Exploring the link between star and planet formation with Ariel , 2021, Experimental Astronomy.

[10]  G. Mulders,et al.  The Mass Budgets and Spatial Scales of Exoplanet Systems and Protoplanetary Disks , 2021, The Astrophysical Journal.

[11]  B. Bitsch,et al.  How drifting and evaporating pebbles shape giant planets , 2021, Astronomy & Astrophysics.

[12]  Antonino Francesco Lanza,et al.  Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere , 2021, Nature.

[13]  S. Dong,et al.  Exoplanet Statistics and Theoretical Implications , 2021, Annual Review of Astronomy and Astrophysics.

[14]  S. Molinari,et al.  Tracing the Formation History of Giant Planets in Protoplanetary Disks with Carbon, Oxygen, Nitrogen, and Sulfur , 2020, The Astrophysical Journal.

[15]  J. Lothringer,et al.  A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters , 2020, 2011.10626.

[16]  E. Bergin,et al.  Astrochemistry and compositions of planetary systems , 2020, 2010.03529.

[17]  M. Marley,et al.  Beyond Equilibrium Temperature: How the Atmosphere/Interior Connection Affects the Onset of Methane, Ammonia, and Clouds in Warm Transiting Giant Planets , 2020, Astronomical Journal.

[18]  P. Bodenheimer,et al.  Growth of Jupiter: Formation in disks of gas and solids and evolution to the present epoch , 2020, 2009.05575.

[19]  E. Dishoeck,et al.  Connecting planet formation and astrochemistry , 2020, Astronomy & Astrophysics.

[20]  P. Weissman,et al.  On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko , 2020, Space Science Reviews.

[21]  M. Line,et al.  A comparison of exoplanet spectroscopic retrieval tools , 2020, Monthly Notices of the Royal Astronomical Society.

[22]  P. Bodenheimer,et al.  Detailed Calculations of the Efficiency of Planetesimal Accretion in the Core-accretion Model , 2019, The Astrophysical Journal.

[23]  T. Downes,et al.  Stellar cosmic rays as an important source of ionisation in protoplanetary disks: a disk mass dependent process , 2019, Monthly Notices of the Royal Astronomical Society.

[24]  R. Helled,et al.  The origin of the high metallicity of close-in giant exoplanets , 2019, Astronomy & Astrophysics.

[25]  R. Wordsworth,et al.  Jupiter's Composition Suggests its Core Assembled Exterior to the N2 Snowline , 2019, The Astronomical Journal.

[26]  J. Jørgensen,et al.  Ingredients for solar-like systems: protostar IRAS 16293-2422 B versus comet 67P/Churyumov–Gerasimenko , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  H. Balsiger,et al.  Cometary Chemistry and the Origin of Icy Solar System Bodies: The View After Rosetta , 2019, Annual Review of Astronomy and Astrophysics.

[28]  J. Berthelier,et al.  Elemental and molecular abundances in comet 67P/Churyumov-Gerasimenko , 2019, Monthly Notices of the Royal Astronomical Society.

[29]  R. Booth,et al.  Planet-forming material in a protoplanetary disc: the interplay between chemical evolution and pebble drift , 2019, Monthly Notices of the Royal Astronomical Society.

[30]  Enzo Pascale,et al.  An Updated Study of Potential Targets for Ariel , 2019, The Astronomical Journal.

[31]  N. Madhusudhan Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects , 2019, Annual Review of Astronomy and Astrophysics.

[32]  A. Johansen,et al.  Consequences of planetary migration on the minor bodies of the early solar system , 2019, Astronomy & Astrophysics.

[33]  T. Nakamoto,et al.  Shock-generating Planetesimals Perturbed by a Giant Planet in a Gas Disk , 2018, The Astrophysical Journal.

[34]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview , 2018, The Astrophysical Journal.

[35]  E. Pascale,et al.  Exoplanet spectroscopy and photometry with the Twinkle space telescope , 2018, Experimental Astronomy.

[36]  C. Ceccarelli,et al.  The census of interstellar complex organic molecules in the Class I hot corino of SVS13-A , 2018, Monthly Notices of the Royal Astronomical Society.

[37]  F. Ménard,et al.  Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region , 2018, The Astrophysical Journal.

[38]  Laboratoire Lagrange,et al.  Why do protoplanetary disks appear not massive enough to form the known exoplanet population? , 2018, Astronomy & Astrophysics.

[39]  T. Encrenaz,et al.  UvA-DARE (Digital Academic Repository) A chemical survey of exoplanets with ARIEL , 2022 .

[40]  K. Varmuza,et al.  H/C elemental ratio of the refractory organic matter in cometary particles of 67P/Churyumov-Gerasimenko , 2018, Astronomy & Astrophysics.

[41]  Daniel J. Price,et al.  Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk , 2018, The Astrophysical Journal.

[42]  H Germany,et al.  Cosmic-ray ionisation in circumstellar discs , 2018, Astronomy & Astrophysics.

[43]  L. Testi,et al.  Second-generation dust produced by the formation of giant planets in circumstellar discs , 2018, 1802.04361.

[44]  M. Min,et al.  The contribution of the ARIEL space mission to the study of planetary formation , 2018, 1804.06179.

[45]  F. Marzari Shifting of the resonance location for planets embedded in circumstellar disks , 2017, 1712.04178.

[46]  I. Kamp,et al.  X-ray radiative transfer in protoplanetary disks - The role of dust and X-ray background fields , 2017, 1711.07249.

[47]  Lunar,et al.  ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet , 2017, 1711.05185.

[48]  A. Johansen,et al.  Debris disc constraints on planetesimal formation , 2017, 1711.03490.

[49]  A. Johansen,et al.  Forming Planets via Pebble Accretion , 2017 .

[50]  Harry Lehto,et al.  Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta , 2017 .

[51]  Astronomy,et al.  ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets , 2017, 1702.02844.

[52]  S. Raymond,et al.  Formation of terrestrial planets in eccentric and inclined giant planet systems , 2016, 1802.00403.

[53]  Catherine Walsh,et al.  Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? , 2016, 1607.06710.

[54]  F. Marzari,et al.  Pericenter precession induced by a circumstellar disk on the orbit of massive bodies: comparison between analytical predictions and numerical results , 2016 .

[55]  Nikku Madhusudhan,et al.  Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability , 2016, Space Science Reviews.

[56]  Cea,et al.  Protostars: Forges of cosmic rays? , 2016, 1602.08495.

[57]  Martin Rubin,et al.  Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA , 2015 .

[58]  A. Johansen,et al.  The growth of planets by pebble accretion in evolving protoplanetary discs , 2015 .

[59]  E. Bergin,et al.  Tracing the ingredients for a habitable earth from interstellar space through planet formation , 2015, Proceedings of the National Academy of Sciences.

[60]  M. Asplund,et al.  The elemental composition of the Sun: II. The iron group elements Sc to Ni , 2014, 1405.0287.

[61]  M. Asplund,et al.  The elemental composition of the Sun - I. The intermediate mass elements Na to Ca , 2014, 1405.0279.

[62]  Yann Alibert,et al.  From stellar nebula to planets: The refractory components , 2013, 1312.3085.

[63]  B. Ercolano,et al.  X-ray ionization rates in protoplanetary discs , 2013, 1309.6537.

[64]  A. Fortier,et al.  Planet formation models: the interplay with the planetesimal disc , 2012, 1210.4009.

[65]  I. Kamp,et al.  Far-ultraviolet and X-ray irradiated protoplanetary disks : a grid of models I. The disk structure , 2012, 1208.4959.

[66]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[67]  Edward R. D. Scott,et al.  Chondrules and the Protoplanetary Disk , 2011 .

[68]  P. Armitage Astrophysics of Planet Formation , 2010 .

[69]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[70]  A. Coradini,et al.  Probing the history of Solar system through the cratering records on Vesta and Ceres , 2009, 0902.3579.

[71]  Jack J. Lissauer,et al.  Models of Jupiter's growth incorporating thermal and hydrodynamic constraints , 2008, 0810.5186.

[72]  M. Duncan,et al.  Embedded star clusters and the formation of the Oort cloud II. The effect of the primordial solar nebula , 2007 .

[73]  Jonathan P. Williams,et al.  High-Resolution Submillimeter Constraints on Circumstellar Disk Structure , 2006, astro-ph/0610813.

[74]  R. Malhotra,et al.  Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations , 2005, astro-ph/0507319.

[75]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[76]  W. Webber,et al.  A New Estimate of the Local Interstellar Energy Density and Ionization Rate of Galactic Cosmic Cosmic Rays , 1998 .

[77]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[78]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[79]  S. Weidenschilling,et al.  Aerodynamics of solid bodies in the solar nebula. , 1977 .

[80]  R. Klein,et al.  The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries? , 2000 .