Trends in Antarctic Geopotential Height and Temperature: A Comparison between Radiosonde and NCEP–NCAR Reanalysis Data

Abstract A comparison of 40-yr (1960–99) trends in Antarctic geopotential height and temperature from quality controlled radiosonde observations and NCEP–NCAR reanalysis (NNR) data is undertaken. Observations from four Antarctic stations—having sufficiently long-term and consistent datasets—at four pressure levels (850, 500, 300, and 100 hPa) are utilized. The NNR reveals substantial negative trends in tropospheric geopotential height at high southern latitudes with no significant trends seen in the lower stratosphere above Antarctica. In contrast, observations indicate only minor negative trends in tropospheric height, while statistically significant decreases in height in the lower stratosphere have occurred over East Antarctica. However, both NNR and observations show a consistent, significant warming (∼1°C) in the lower troposphere (>500 hPa) above coastal Antarctica. At higher altitudes, trends derived from the two datasets diverge; the NNR fails to capture the marked cooling in the lower stratospher...

[1]  W. Connolley,et al.  A Comparison of Five Numerical Weather Prediction Analysis Climatologies in Southern High Latitudes , 2001 .

[2]  Piers M. Forster,et al.  Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling , 1999 .

[3]  Robert E. Kistler,et al.  Impact of Satellite Data an the CDAS-Reanalysis System , 1995 .

[4]  Trevor W. R. Wallis A Subset of Core Stations from the Comprehensive Aerological Reference Dataset (CARDS) , 1998 .

[5]  D. Bromwich,et al.  Surface Energy Balance of the NCEP MRF and NCEP–NCAR Reanalysis in Antarctic Latitudes during FROST , 1999 .

[6]  John R. Lanzante,et al.  Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data , 1996 .

[7]  David Parker,et al.  Towards a consistent global climatological rawinsonde data‐base , 1995 .

[8]  M. Allen,et al.  Human Influence on the Atmospheric Vertical Temperature Structure: Detection and Observations , 1996, Science.

[9]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[10]  J. Angell,et al.  Variations and Trends in Tropospheric and Stratospheric Global Temperatures, 1958–87 , 1988 .

[11]  T. Parish Surface winds over the Antarctic continent: A review , 1988 .

[12]  M. Chelliah,et al.  Comparison of Tropospheric Temperatures Derived from the NCEP/NCAR Reanalysis, NCEP Operational Analysis, and the Microwave Sounding Unit , 1997 .

[13]  B. Santer,et al.  Uncertainties in observationally based estimates of temperature change in the free atmosphere , 1999 .

[14]  D. Bromwich,et al.  ECMWF Analyses and Reanalyses Depiction of ENSO Signal in Antarctic Precipitation , 2000 .

[15]  T. C. Johns,et al.  A search for human influences on the thermal structure of the atmosphere , 1995, Nature.

[16]  J. Wallace,et al.  Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability* , 2000 .

[17]  D. Rind,et al.  Comparing upper tropospheric and lower stratospheric temperatures: Microwave sounding unit, radiosonde, COSPAR International Reference Atmosphere, and National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis monthly mean climatologies , 1998 .

[18]  A. Oort,et al.  Upper-Air Temperature Trends over the Globe, 1958–1989 , 1993 .

[19]  J. Shanklin,et al.  Continued decline of total ozone over Halley, Antarctica, since 1985 , 1995, Nature.

[20]  Keith M. Hines,et al.  Artificial surface pressure trends in the NCEP-NCAR reanalysis over the Southern Ocean and Antarctica , 2000 .

[21]  Fei Wu,et al.  Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses , 2000 .

[22]  V. Ramaswamy,et al.  Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling , 1996, Nature.

[23]  Kevin E. Trenberth,et al.  Signal Versus Noise in the Southern Oscillation , 1984 .

[24]  W. Randel,et al.  Cooling of the Arctic and Antarctic Polar Stratospheres due to Ozone Depletion , 1999 .

[25]  B. Dickson Oceanography: All change in the Arctic , 1999, Nature.

[26]  D. Bromwich,et al.  Validation of operational numerical analyses in Antarctic latitudes , 1997 .

[27]  James W. Hurrell,et al.  Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite Microwave Sounding Unit Records. , 1998 .

[28]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[29]  Michael E. Schlesinger,et al.  Detecting changes in global climate induced by greenhouse gases , 1987 .

[30]  Robert E. Eskridge,et al.  Use of Radiosonde Temperature Data in Climate Studies , 1998 .

[31]  David M. H. Sexton,et al.  A new global gridded radiosonde temperature data base and recent temperature trends , 1997 .

[32]  Frank J. Wentz,et al.  Effects of orbital decay on satellite-derived lower-tropospheric temperature trends , 1998, Nature.

[33]  G. Marshall,et al.  An appraisal of NCEP/NCAR reanalysis MSLP data viability for climate studies in the South Pacific , 2000 .

[34]  J. Kahl,et al.  Fifty‐year record of north polar temperatures shows warming , 2001 .

[35]  John R. Lanzante,et al.  Sensitivity of Tropospheric and Stratospheric Temperature Trends to Radiosonde Data Quality , 2000 .

[36]  N. B. Ingleby Assimilation of Station Level Pressure and Errors in Station Height , 1995 .

[37]  D. Gaffen,et al.  Temporal inhomogeneities in radiosonde temperature records , 1994 .

[38]  Temperature above the surface layer , 1995 .

[39]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.