Resonance energy transfer from organic chromophores to fullerene molecules

The mechanism of charge separation in polymeric bulk heterojunction photovoltaic cells is usually described as electron transfer from the absorbing polymer to an electron acceptor material such as (6,6)-phenyl C61 butyric acid methyl ester (PCBM). We consider the possibility of energy transfer to PCBM as another potential mechanism for charge separation. We demonstrate resonance energy transfer from a red-emitting organic chromophore (Nile red) to PCBM and measure a Forster radius of 3.1nm. Using standard Forster energy transfer theory, we calculate a Forster radius (R0) of around 2.7nm for this donor-acceptor pair in polystyrene. Nile red has a similar emission spectrum to commonly used conjugated polymers used in polymer/PCBM photovoltaic cells. We consider the implications of an energy transfer mechanism on the design requirements for future photovoltaic cells.

[1]  K. Kamada,et al.  Spectroscopic studies of nile red in organic solvents and polymers , 1996 .

[2]  B. Schwartz,et al.  Ultrafast competition between energy and charge transfer in a functionalized electron donor/fullerene derivative , 2000 .

[3]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[4]  Thomas W. Ebbesen,et al.  Excited-state properties of C60 , 1991 .

[5]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[6]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[7]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[8]  Fabrizia Negri,et al.  Electronic states and transitions in C_60 and C_70 fullerenes , 2002, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[9]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[10]  Hans-Heinrich Hörhold,et al.  Efficient Titanium Oxide/Conjugated Polymer Photovoltaics for Solar Energy Conversion , 2000 .

[11]  Jan C Hummelen,et al.  Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer. , 2005, The journal of physical chemistry. A.

[12]  René A. J. Janssen,et al.  Polymer-Fullerene Bulk Heterojunction Solar Cells , 2005 .

[13]  Shuai,et al.  Electronic structure and nonlinear optical properties of the fullerenes C60 and C70: A valence-effective-Hamiltonian study. , 1992, Physical review. B, Condensed matter.

[14]  M. Summers,et al.  Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells , 2005 .

[15]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[16]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[17]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[18]  G. Scholes,et al.  Limitations of the Förster Description of Singlet Exciton Migration: The Illustrative Example of Energy Transfer to Ketonic Defects in Ladder‐type Poly(para‐phenylenes) , 2005 .

[19]  V. Mihailetchi,et al.  Photocurrent generation in polymer-fullerene bulk heterojunctions. , 2004, Physical review letters.

[20]  F. Zhang,et al.  Polymer Solar Cells Based on a Low‐Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm , 2005 .

[21]  D. Bradley,et al.  Model for Energy Transfer in Polymer/Dye Blends Based on Point−Surface Dipole Interaction , 2004 .

[22]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[23]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[24]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[25]  David Beljonne,et al.  Exciton migration in rigid-rod conjugated polymers: an improved Förster model. , 2005, Journal of the American Chemical Society.

[26]  S. Meskers,et al.  Photoinduced energy and electron transfer in oligo(p-phenylene vinylene)-fullerene dyads , 2004 .

[27]  Wje Waldo Beek,et al.  Hybrid polymer solar cells based on zinc oxide , 2005 .

[28]  Jenny Nelson Organic photovoltaic films , 2002 .

[29]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[30]  Tom J. Savenije,et al.  Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer , 1998 .

[31]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[32]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[33]  Michael D. McGehee,et al.  Conjugated Polymer Photovoltaic Cells , 2004 .

[34]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .