Laser Detection of Pollution

Spectroscopic analysis is a useful technique for identifying and quantitatively determining the presence of specific gaseous constituents. Development of high-power tunable lasers has made the spectroscopic technique for detection of trace constituents in the atmosphere very attractive for practical applications. In this article three of the currently used modes for laser detection of pollution are reviewed: (i) long-path measurements, (ii) laser Raman (differential absorption) measurements, and (iii) optoacoustic detection. Progress in the field has been extremely rapid in the last few years and very useful and reliable data on air pollution can now be obtained routinely with the techniques described.

[1]  R. Gerlach,et al.  Sensitive optoacoustic detection of carbon monoxide by resonance absorption , 1978 .

[2]  M. Frerking,et al.  Infrared heterodyne spectroscopy of atmospheric ozone , 1977, IEEE Journal of Quantum Electronics.

[3]  A. J. Gibson,et al.  Laser radar measurements of the atmospheric sodium layer , 1970 .

[4]  C. Patel,et al.  A new optoacoustic cell with improved performance , 1977 .

[5]  C K Patel,et al.  Nitric Oxide Air Pollution: Detection by Optoacoustic Spectroscopy , 1971, Science.

[6]  G. Kent,et al.  Laser Radar Observations of Atmospheric Potassium , 1973, Nature.

[7]  P. K. Tien,et al.  CW HIGH‐POWER CO2–N2–He LASER , 1965 .

[8]  C. V. Shank,et al.  Physics of dye lasers , 1975 .

[9]  C. E. Hackett,et al.  Acoustic amplifier for detection of atmospheric pollutants , 1973 .

[10]  W. Lahmann,et al.  Optoacoustic detection of sulphur dioxide below the parts per billion level , 1978 .

[11]  L. Mollenauer,et al.  A broadly tunable cw laser using color centers , 1974 .

[12]  A. Calawa,et al.  Obervation of Λ-doubling and Zeeman splitting in the fundamental infrared absorption band of nitric oxide , 1972 .

[13]  C. Patel Spectroscopic measurements of the stratosphere using tunable infrared lasers , 1976 .

[14]  L. Kreuzer,et al.  Ultralow Gas Concentration Infrared Absorption Spectroscopy , 1971 .

[15]  R. C. Miller,et al.  Tunable Coherent Parametric Oscillation in LiNb O 3 at Optical Frequencies , 1965 .

[16]  S. Smith,et al.  Tunable infrared lasers , 1977 .

[17]  Robert L. Byer,et al.  Remote Air Pollution Measurement , 1975 .

[18]  Remote measurement of NO2 emission from a chemical factory by the differential absorption technique , 1974 .

[19]  U. Brinkmann,et al.  Applications of tunable dye lasers to air pollution detection: Measurements of atmospheric NO2 concentrations by differential absorption , 1974 .

[20]  M. Molina,et al.  Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone , 1974, Nature.

[21]  C. Patel Saturation spectroscopy with a tunable spin‐flip Raman laser , 1974 .

[22]  C. Patel,et al.  Selective excitation through vibrational energy transfer and optical maser action in N2-CO2 , 1964 .

[23]  D. F. Grigal,et al.  Stratospheric Nitric Oxide: Measurements during Daytime and Sunset , 1975, Science.

[24]  Robert L. Byer,et al.  Remote detection of CO by parametric tunable laser , 1974 .

[25]  J. Kuhl,et al.  A frequency doubled dye laser with a servo-tuned crystal , 1975 .

[26]  L. Rosengren,et al.  Optimal optoacoustic detector design. , 1975, Applied optics.

[27]  David Buhl,et al.  NH3 spectral line measurements on Earth and Jupiter using a 10 μm superheterodyne receiver , 1977 .

[28]  L. E. Trimble,et al.  Hydrogen Cyanide Production During Reduction of Nitric Oxide over Platinum Catalysts: Transient Effects , 1978, Science.

[29]  R. T. Ku,et al.  Long-path monitoring of atmospheric carbon monoxide with a tunable diode laser system. , 1975, Applied optics.

[30]  J. G. Hawley,et al.  Remote measurement of HCI, CH(4), and N(2)O using a single-ended chemical-laser lidar system. , 1976, Applied optics.

[31]  A. J. Gibson,et al.  Atmospheric Sodium measured by a Tuned Laser Radar , 1969, Nature.

[32]  S. H. Melfi,et al.  Observation of Raman scattering by SO2 in a generating plant stack plume , 1973 .

[33]  C. Patel CW LASER OSCILLATION IN AN N2–CS2 SYSTEM , 1965 .

[34]  A. J. Gibson,et al.  The seasonal variation of the night-time sodium layer , 1971 .

[35]  E. Hinkley,et al.  Measurement of the fundamental vibrationrotation spectrum of CIO. , 1977, Applied optics.

[36]  H. Johnston Reduction of Stratospheric Ozone by Nitrogen Oxide Catalysts from Supersonic Transport Exhaust , 1971, Science.

[37]  C. Patel CW LASER ACTION IN N2O (N2–N2O SYSTEM) , 1965 .

[38]  R L Byer,et al.  Pollutant detection by absorption using mie scattering and topographic targets as retroreflectors. , 1973, Applied optics.

[39]  C. Patel,et al.  Tunable Stimulated Raman Scattering from Conduction Electrons in InSb , 1970 .

[40]  D. A. Leonard,et al.  Observation of Raman Scattering from the Atmosphere using a Pulsed Nitrogen Ultraviolet Laser , 1967, Nature.

[41]  C. Patel Linewidth of Tunable Stimulated Raman Scattering , 1972 .

[42]  L. Dodge,et al.  NO(2) Concentration Measurements in an Urban Atmosphere Using Differential Absorption Techniques. , 1974, Applied optics.

[43]  E. Burkhardt,et al.  Spectroscopic Measurements of Stratospheric Nitric Oxide and Water Vapor , 1974, Science.

[44]  L. E. Trimble,et al.  Hydrogen Cyanide Production During Reduction of Nitric Oxide over Platinum Catalysts , 1975, Science.

[45]  N D Kenyon,et al.  Air Pollution: Sensitive Detection of Ten Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers , 1972, Science.

[46]  E. C. Sutton,et al.  Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus , 1976 .