Using Discriminative Dimensionality Reduction to Visualize Classifiers
暂无分享,去创建一个
[1] Jorma Laaksonen,et al. LVQ_PAK: The Learning Vector Quantization Program Package , 1996 .
[2] Barbara Hammer,et al. Using Nonlinear Dimensionality Reduction to Visualize Classifiers , 2013, IWANN.
[3] Michael H. Böhlen,et al. Visual Data Mining - Theory, Techniques and Tools for Visual Analytics , 2008, Visual Data Mining.
[4] Hau-San Wong,et al. Kernel clustering-based discriminant analysis , 2007, Pattern Recognit..
[5] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[6] Matthew O. Ward,et al. Interactive data visualization , 2010 .
[7] H. Kile,et al. Bandwidth Selection in Kernel Density Estimation , 2010 .
[8] Peter A. Flach,et al. Brier Curves: a New Cost-Based Visualisation of Classifier Performance , 2011, ICML.
[9] HammerBarbara,et al. Using Discriminative Dimensionality Reduction to Visualize Classifiers , 2015 .
[10] Clemens Otte,et al. Safe and Interpretable Machine Learning: A Methodological Review , 2013 .
[11] Michel Verleysen,et al. Nonlinear Dimensionality Reduction , 2021, Computer Vision.
[12] Geoffrey E. Hinton,et al. Neighbourhood Components Analysis , 2004, NIPS.
[13] Ravi Kothari,et al. DECISION TREES FOR CLASSIFICATION: A REVIEW AND SOME NEW RESULTS , 2001 .
[14] Barbara Hammer,et al. Discriminative Dimensionality Reduction Mappings , 2012, IDA.
[15] François Poulet,et al. Visual SVM , 2005, ICEIS.
[16] Samuel Kaski,et al. Scalable Optimization of Neighbor Embedding for Visualization , 2013, ICML.
[17] Frank-Michael Schleif,et al. Learning vector quantization for (dis-)similarities , 2014, Neurocomputing.
[18] Michael Biehl,et al. A General Framework for Dimensionality-Reducing Data Visualization Mapping , 2012, Neural Computation.
[19] Xiaoru Wang,et al. SVMV - A Novel Algorithm for the Visualization of SVM Classification Results , 2006, ISNN.
[20] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[21] David Cohn,et al. Informed Projections , 2002, NIPS.
[22] Barbara Hammer,et al. Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.
[23] Michael Biehl,et al. Adaptive Relevance Matrices in Learning Vector Quantization , 2009, Neural Computation.
[24] Ofer Melnik,et al. Decision Region Connectivity Analysis: A Method for Analyzing High-Dimensional Classifiers , 2002, Machine Learning.
[25] G. Baudat,et al. Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.
[26] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[27] Vasant Honavar,et al. Visual Methods for Examining SVM Classifiers , 2008, Visual Data Mining.
[28] Samuel Kaski,et al. Improved learning of Riemannian metrics for exploratory analysis [Neural Networks 17 (8–9) 1087–1100] , 2005 .
[29] Klaus Obermayer,et al. Soft Learning Vector Quantization , 2003, Neural Computation.
[30] Barbara Hammer,et al. Data visualization by nonlinear dimensionality reduction , 2015, WIREs Data Mining Knowl. Discov..
[31] Ulrich H.-G. Kreßel,et al. Pairwise classification and support vector machines , 1999 .
[32] Jarkko Venna,et al. Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization , 2010, J. Mach. Learn. Res..
[33] Barbara Hammer,et al. Parametric nonlinear dimensionality reduction using kernel t-SNE , 2015, Neurocomputing.
[34] W. Scott Spangler,et al. Class visualization of high-dimensional data with applications , 2002, Comput. Stat. Data Anal..
[35] Thomas Villmann,et al. Limited Rank Matrix Learning, discriminative dimension reduction and visualization , 2012, Neural Networks.
[36] Paulo J. G. Lisboa,et al. Making machine learning models interpretable , 2012, ESANN.
[37] Michaël Aupetit,et al. High-dimensional labeled data analysis with topology representing graphs , 2005, Neurocomputing.
[38] Eric O. Postma,et al. Dimensionality Reduction: A Comparative Review , 2008 .
[39] Frank-Michael Schleif,et al. Learning interpretable kernelized prototype-based models , 2014, Neurocomputing.
[40] Ivan Bratko,et al. Nomograms for visualizing support vector machines , 2005, KDD '05.
[41] Mario Costa Sousa,et al. iLAMP: Exploring high-dimensional spacing through backward multidimensional projection , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).
[42] Alex V Vasenkov. Big data for research and development , 2015 .
[43] Stefan Rüping,et al. Learning interpretable models , 2006 .