Using Discriminative Dimensionality Reduction to Visualize Classifiers

Albeit automated classifiers offer a standard tool in many application areas, there exists hardly a generic possibility to directly inspect their behavior, which goes beyond the mere classification of (sets of) data points. In this contribution, we propose a general framework how to visualize a given classifier and its behavior as concerns a given data set in two dimensions. More specifically, we use modern nonlinear dimensionality reduction (DR) techniques to project a given set of data points and their relation to the classification decision boundaries. Furthermore, since data are usually intrinsically more than two-dimensional and hence cannot be projected to two dimensions without information loss, we propose to use discriminative DR methods which shape the projection according to given class labeling as is the case for a classification setting. With a given data set, this framework can be used to visualize any trained classifier which provides a probability or certainty of the classification together with the predicted class label. We demonstrate the suitability of the framework in the context of different dimensionality reduction techniques, in the context of different attention foci as concerns the visualization, and as concerns different classifiers which should be visualized.

[1]  Jorma Laaksonen,et al.  LVQ_PAK: The Learning Vector Quantization Program Package , 1996 .

[2]  Barbara Hammer,et al.  Using Nonlinear Dimensionality Reduction to Visualize Classifiers , 2013, IWANN.

[3]  Michael H. Böhlen,et al.  Visual Data Mining - Theory, Techniques and Tools for Visual Analytics , 2008, Visual Data Mining.

[4]  Hau-San Wong,et al.  Kernel clustering-based discriminant analysis , 2007, Pattern Recognit..

[5]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[6]  Matthew O. Ward,et al.  Interactive data visualization , 2010 .

[7]  H. Kile,et al.  Bandwidth Selection in Kernel Density Estimation , 2010 .

[8]  Peter A. Flach,et al.  Brier Curves: a New Cost-Based Visualisation of Classifier Performance , 2011, ICML.

[9]  HammerBarbara,et al.  Using Discriminative Dimensionality Reduction to Visualize Classifiers , 2015 .

[10]  Clemens Otte,et al.  Safe and Interpretable Machine Learning: A Methodological Review , 2013 .

[11]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[12]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[13]  Ravi Kothari,et al.  DECISION TREES FOR CLASSIFICATION: A REVIEW AND SOME NEW RESULTS , 2001 .

[14]  Barbara Hammer,et al.  Discriminative Dimensionality Reduction Mappings , 2012, IDA.

[15]  François Poulet,et al.  Visual SVM , 2005, ICEIS.

[16]  Samuel Kaski,et al.  Scalable Optimization of Neighbor Embedding for Visualization , 2013, ICML.

[17]  Frank-Michael Schleif,et al.  Learning vector quantization for (dis-)similarities , 2014, Neurocomputing.

[18]  Michael Biehl,et al.  A General Framework for Dimensionality-Reducing Data Visualization Mapping , 2012, Neural Computation.

[19]  Xiaoru Wang,et al.  SVMV - A Novel Algorithm for the Visualization of SVM Classification Results , 2006, ISNN.

[20]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[21]  David Cohn,et al.  Informed Projections , 2002, NIPS.

[22]  Barbara Hammer,et al.  Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.

[23]  Michael Biehl,et al.  Adaptive Relevance Matrices in Learning Vector Quantization , 2009, Neural Computation.

[24]  Ofer Melnik,et al.  Decision Region Connectivity Analysis: A Method for Analyzing High-Dimensional Classifiers , 2002, Machine Learning.

[25]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[26]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[27]  Vasant Honavar,et al.  Visual Methods for Examining SVM Classifiers , 2008, Visual Data Mining.

[28]  Samuel Kaski,et al.  Improved learning of Riemannian metrics for exploratory analysis [Neural Networks 17 (8–9) 1087–1100] , 2005 .

[29]  Klaus Obermayer,et al.  Soft Learning Vector Quantization , 2003, Neural Computation.

[30]  Barbara Hammer,et al.  Data visualization by nonlinear dimensionality reduction , 2015, WIREs Data Mining Knowl. Discov..

[31]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[32]  Jarkko Venna,et al.  Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization , 2010, J. Mach. Learn. Res..

[33]  Barbara Hammer,et al.  Parametric nonlinear dimensionality reduction using kernel t-SNE , 2015, Neurocomputing.

[34]  W. Scott Spangler,et al.  Class visualization of high-dimensional data with applications , 2002, Comput. Stat. Data Anal..

[35]  Thomas Villmann,et al.  Limited Rank Matrix Learning, discriminative dimension reduction and visualization , 2012, Neural Networks.

[36]  Paulo J. G. Lisboa,et al.  Making machine learning models interpretable , 2012, ESANN.

[37]  Michaël Aupetit,et al.  High-dimensional labeled data analysis with topology representing graphs , 2005, Neurocomputing.

[38]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[39]  Frank-Michael Schleif,et al.  Learning interpretable kernelized prototype-based models , 2014, Neurocomputing.

[40]  Ivan Bratko,et al.  Nomograms for visualizing support vector machines , 2005, KDD '05.

[41]  Mario Costa Sousa,et al.  iLAMP: Exploring high-dimensional spacing through backward multidimensional projection , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[42]  Alex V Vasenkov Big data for research and development , 2015 .

[43]  Stefan Rüping,et al.  Learning interpretable models , 2006 .