Numerical Strategies for the System of Second Order IVPs Using the RK-Butcher Algorithms

Novel polyphenolic compounds are disclosed. These compounds have utility as branching agents in the production of novel, randomly branched polycarbonates .

[1]  David J. Evans,et al.  Analysis of second order multivariate linear system using single term walsh series technique and runge kutta method , 1999, Int. J. Comput. Math..

[2]  David J. Evans,et al.  Weighted fifth-order Runge-Kutta formulas for second-order differential equations , 1998, Int. J. Comput. Math..

[3]  David J. Evans,et al.  A new fifth order weighted runge kutta formula , 1996, Int. J. Comput. Math..

[4]  David J. Evans,et al.  A comparison of extended runge-kutta formulae based on variety of means to solve system of ivps , 2001, Int. J. Comput. Math..

[5]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[6]  David J. Evans,et al.  Analysis of different second order systems via runge-kutta method , 1999, Int. J. Comput. Math..

[7]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[8]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[9]  Morris Bader A comparative study of new truncation error estimates and intrinsic accuracies of some higher order Runge-Kutta algorithms , 1987, Comput. Chem..

[10]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[11]  David J. Evans,et al.  Analysis of non-linear singular system from fluid dynamics using extended runge-kutta methods , 2000, Int. J. Comput. Math..

[12]  David J. Evans,et al.  Optimal control of singular systems using the rk–butcher algorithm , 2004, Int. J. Comput. Math..

[13]  Erwin Fehlberg,et al.  Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme , 1970, Computing.

[14]  David J. Evans,et al.  A fourth order Runge-Kutta RK(4, 4) method with error control , 1999, Int. J. Comput. Math..

[15]  Morris Bader A new technique for the early detection of stiffness in coupled differential equations and application to standard Runge-Kutta algorithms , 1998 .

[16]  K. Murugesan,et al.  Numerical solution of an industrial robot arm control problem using the RK-Butcher algorithm , 2004, Int. J. Comput. Appl. Technol..

[17]  David J. Evans A new 4th order runge-kutta method for initial value problems with error control , 1991, Int. J. Comput. Math..

[18]  David J. Evans,et al.  A Fourth Order Embedded Runge-Kutta RKACeM(4,4) Method Based on Arithmetic and Centroidal Means with Error Control , 2002, Int. J. Comput. Math..