Leveraging catalytic effects of heterointerfaces through multilayering for superior cathode performance

[1]  K. Yamaji,et al.  Determination of relevant factors affecting the surface oxygen exchange coefficient of solid oxide fuel cell cathode with ionic conducting oxide coating , 2020 .

[2]  K. Yamaji,et al.  Evolution of cathode-interlayer interfaces and its effect on long-term degradation , 2020 .

[3]  Kevin Huang,et al.  Atomic Layer Deposited Zirconia Overcoats as On-Board Strontium Getters for Improved Solid Oxide Fuel Cell Nanocomposite Cathode Durability , 2020 .

[4]  K. Yamaji,et al.  Oxygen surface exchange properties and surface segregation behavior of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes. , 2019, Physical chemistry chemical physics : PCCP.

[5]  K. Yamaji,et al.  Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells , 2018, Nano Energy.

[6]  K. Amezawa,et al.  Electrochemical performance of LaNi0.6Co0.4O3-δ–Ce0.9Gd0.1O1.95 composite electrode and evaluation of its effective reaction length , 2018, Journal of Solid State Electrochemistry.

[7]  P. Su,et al.  Nanomaterials and technologies for low temperature solid oxide fuel cells : Recent advances, challenges and opportunities , 2018 .

[8]  K. Yamaji,et al.  Elucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfaces , 2017 .

[9]  K. Amezawa,et al.  Effect of a (La,Sr)2CoO4 Phase on the Oxygen Exchange Reaction of Dense and Porous (La,Sr)CoO3 Electrodes , 2017 .

[10]  K. Dawson,et al.  Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells , 2017, Nature Energy.

[11]  Bilge Yildiz,et al.  Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. , 2016, Nature materials.

[12]  T. Ishihara,et al.  Surface chemistry of La0.6Sr0.4CoO3−δ thin films and its impact on the oxygen surface exchange resistance , 2015 .

[13]  John A. Kilner,et al.  Materials for Intermediate-Temperature Solid-Oxide Fuel Cells , 2014 .

[14]  G. Friedbacher,et al.  Correlating surface cation composition and thin film microstructure with the electrochemical performance of lanthanum strontium cobaltite (LSC) electrodes , 2014 .

[15]  Yunhui Gong,et al.  Atomic Layer Deposition Functionalized Composite SOFC Cathode La0.6Sr0.4Fe0.8Co0.2O3-δ -Gd0.2Ce0.8O1.9: Enhanced Long-Term Stability , 2013 .

[16]  Toshio Suzuki,et al.  High performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells , 2013 .

[17]  W. Sitte,et al.  Comparison of oxygen exchange kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3 − δ and La0.6Sr0.4CoO3 − δ , 2012 .

[18]  E. Ivers-Tiffée,et al.  Impedance Spectroscopy for High‐Temperature Fuel Cells , 2012 .

[19]  Koichi Hamamoto,et al.  AC impedance characteristics for anode-supported microtubular solid oxide fuel cells , 2012 .

[20]  Ellen Ivers-Tiffée,et al.  Nanoscaled La0.6Sr0.4CoO3−δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance , 2011 .

[21]  J. Martynczuk,et al.  Tailoring of LaxSr1‐xCoyFe1‐yO3‐δ Nanostructure by Pulsed Laser Deposition , 2011 .

[22]  J. Kilner,et al.  Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3 − δ , 2010 .

[23]  A. Manthiram,et al.  Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin‐Film Solid Oxide Fuel Cells , 2009 .

[24]  Juergen Fleig,et al.  Optimized La0.6Sr0.4CoO3–δ Thin‐Film Electrodes with Extremely Fast Oxygen‐Reduction Kinetics , 2009 .

[25]  L. Gauckler,et al.  Microstructures of CGO and YSZ Thin Films by Pulsed Laser Deposition , 2008 .

[26]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[27]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[28]  K. Kawamura,et al.  Determination of Oxygen Vacancy Concentration in a Thin Film of La0.6Sr0.4CoO3 − δ by an Electrochemical Method , 2002 .

[29]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[30]  N. Sakai,et al.  Oxygen isotope exchange with a dense La0.6Sr0.4CoO3−δ electrode on a Ce0.9Ca0.1O1.9 electrolyte , 1999 .

[31]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[32]  J. Kilner,et al.  Oxygen self-diffusion and surface exchange studies of oxide electrolytes having the fluorite structure , 1996 .

[33]  J. Kilner,et al.  Surface exchange of oxygen in mixed conducting perovskite oxides , 1996 .

[34]  Thomas Lippert,et al.  Low‐Temperature Micro‐Solid Oxide Fuel Cells with Partially Amorphous La0.6Sr0.4CoO3‐δ Cathodes , 2015 .

[35]  Ellen Ivers-Tiffée,et al.  Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells , 2008 .