A Robust Dual-Frequency Radar Profiling Algorithm

In this study, an algorithm to retrieve precipitation from spaceborne dual-frequency (13.8 and 35.6 GHz, or Ku/Ka band) radar observations is formulated and investigated. Such algorithms will be of paramount importance in deriving radar-based and combined radar‐radiometer precipitation estimates from observations provided by the forthcoming NASA Global Precipitation Measurement (GPM) mission. In GPM, dualfrequency Ku-/Ka-band radar observations will be available only within a narrow swath (approximately one-halfofthewidthofthe Ku-bandradarswath) overthe earth’ssurface.Therefore, a particular challengeis to develop a flexible radar retrieval algorithm that can be used to derive physically consistent precipitation profile estimates across the radar swath irrespective of the availability of Ka-band radar observations at any specificlocationinsidethatswath,inotherwords,analgorithmcapableofexploitingtheinformationprovided by dual-frequency measurements but robust in the absence of Ka-band channel. In the present study, a unified, robust precipitation retrieval algorithm able to interpret either Ku-only or dual-frequency Ku-/Ka-band radar observations in a manner consistent with the information content of the observations is formulated. The formulation is based on 1) a generalized Hitschfeld‐Bordan attenuation correction method that yields generic Ku-only precipitation profile estimates and 2) an optimization procedure that adjusts the Ku-band estimates tobephysicallyconsistentwithcoincidentKa-bandreflectivityobservationsandsurfacereferencetechnique‐ based path-integrated attenuation estimates at both Ku and Ka bands. The algorithm is investigated using synthetic and actual airborne radar observations collected in the NASA Tropical Composition, Cloud, and Climate Coupling (TC4) campaign. In the synthetic data investigation, the dual-frequency algorithm performed significantly better than a single-frequency algorithm; dual-frequency estimates, however, are still sensitive to various assumptions such as the particle size distribution shape, vertical and cloud water distributions, and scattering properties of the ice-phase precipitation.

[1]  Nobuhiro Takahashi,et al.  Development of the spaceborne Dual-frequency Precipitation Radar for the Global Precipitation Measurement mission , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[2]  Steven Platnick,et al.  Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) , 2010 .

[3]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[4]  D. Rao,et al.  Classification of tropical precipitating systems and associated Z‐R relationships , 2001 .

[5]  Robert A. Black,et al.  The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing , 2001 .

[6]  Jacques Testud,et al.  Study and Tests of Improved Rain Estimates from the TRMM Precipitation Radar , 2001 .

[7]  Matthias Steiner,et al.  A Microphysical Interpretation of Radar Reflectivity–Rain Rate Relationships , 2004 .

[8]  Stephen L. Durden,et al.  Development of an advanced airborne precipitation radar , 2003 .

[9]  Walter Hitschfeld,et al.  ERRORS INHERENT IN THE RADAR MEASUREMENT OF RAINFALL AT ATTENUATING WAVELENGTHS , 1954 .

[10]  E. Anagnostou,et al.  A differential attenuation based algorithm for estimating precipitation from dual-wavelength spaceborne radar , 2004 .

[11]  Liang Liao,et al.  On modeling air/spaceborne Radar returns in the melting layer , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Christian D. Kummerow,et al.  Combined Radar and Radiometer Analysis of Precipitation Profiles for a Parametric Retrieval Algorithm , 2005 .

[13]  Wim Klaassen,et al.  Radar Observations and Simulation of the Melting Layer of Precipitation , 1988 .

[14]  R. Meneghini,et al.  Use of Dual-Wavelength Radar for Snow Parameter Estimates , 2013 .

[15]  Toshio Iguchi,et al.  Uncertainties in the Rain Profiling Algorithm for the TRMM Precipitation Radar(1. Precipitation Radar (PR), Precipitation Measurements from Space) , 2009 .

[16]  C. Ulbrich Natural Variations in the Analytical Form of the Raindrop Size Distribution , 1983 .

[17]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[18]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[19]  Anthony J. Illingworth,et al.  The Need to Represent Raindrop Size Spectra as Normalized Gamma Distributions for the Interpretation of Polarization Radar Observations , 2002 .

[20]  Ziad S. Haddad,et al.  The TRMM 'Day-1' Radar/Radiometer Combined Rain-Profiling Algorithm , 1997 .

[21]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[22]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[23]  Roger M. Wakimoto,et al.  Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas , 2003 .

[24]  William S. Olson,et al.  Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations , 2008 .

[25]  Hiroshi Kumagai,et al.  A Study of Rain Estimation Methods from Space Using Dual-Wavelength Radar Measurements at Near-Nadir Incidence over Ocean , 1992 .

[26]  Chris Kidd,et al.  Global Precipitation Measurement , 2008 .

[27]  E. Anagnostou,et al.  Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations , 2004 .

[28]  F. Marzano,et al.  Combined cloud-microwave radiative transfer modeling of stratiform rainfall , 2000 .

[29]  V. Chandrasekar,et al.  A GPM Dual-Frequency Retrieval Algorithm: DSD Profile-Optimization Method , 2006 .

[30]  Robin J. Hogan,et al.  A Variational Scheme for Retrieving Rainfall Rate and Hail Reflectivity Fraction from Polarization Radar , 2007 .

[31]  Eugenio Gorgucci,et al.  Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis , 2003 .

[32]  Robert Meneghini,et al.  Intercomparison of Single-Frequency Methods for Retrieving a Vertical Rain Profile from Airborne or Spaceborne Radar Data , 1994 .

[33]  R. C. Srivastava,et al.  A Study of Cirrus Ice Particle Size Distribution Using TC4 Observations , 2009 .

[34]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[35]  Robert Meneghini,et al.  Rain-rate estimates for an attenuating radar , 1978 .

[36]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[37]  Ziad S. Haddad,et al.  Comparison of Radar Rainfall Retrieval Algorithms in Convective Rain during TOGA COARE , 1998 .

[38]  Christian D. Kummerow,et al.  Global Precipitation Measurement , 2008 .

[39]  Daniel Rosenfeld,et al.  Cloud Microphysical Properties, Processes, and Rainfall Estimation Opportunities , 2003 .

[40]  Jeffrey A. Jones,et al.  A Hybrid Surface Reference Technique and Its Application to the TRMM Precipitation Radar , 2004 .

[41]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[42]  Guosheng Liu,et al.  A database of microwave single-scattering properties for nonspherical ice particles , 2008 .

[43]  Nobuhiro Takahashi,et al.  A dual-frequency rain profiling method without the use of a surface reference technique , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[44]  K. K. Lo,et al.  The Growth of Snow in Winter Storms:. An Airborne Observational Study , 1982 .

[45]  R. C. Ball,et al.  Universality in snowflake aggregation , 2003 .

[46]  C. Wunsch Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications , 2006 .

[47]  Jeffrey A. Jones,et al.  Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar , 2000 .

[48]  Jordan G. Powers,et al.  A Description of the Advanced Research WRF Version 2 , 2005 .