Introducing Semantics in Web Personalization: The Role of Ontologies

Web personalization is the process of customizing a web site to the needs of each specific user or set of users. Personalization of a web site may be performed by the provision of recommendations to the users, high-lighting/adding links, creation of index pages, etc. The web personalization systems are mainly based on the exploitation of the navigational patterns of the web site's visitors. When a personalization system relies solely on usage-based results, however, valuable information conceptually related to what is finally recommended may be missed. The exploitation of the web pages' semantics can considerably improve the results of web usage mining and personalization, since it provides a more abstract yet uniform and both machine and human understandable way of processing and analyzing the usage data. The underlying idea is to integrate usage data with content semantics, expressed in ontology terms, in order to produce semantically enhanced navigational patterns that can subsequently be used for producing valuable recommendations. In this paper we propose a semantic web personalization system, focusing on word sense disambiguation techniques which can be applied in order to semantically annotate the web site's content.

[1]  Rada Mihalcea,et al.  A Highly Accurate Bootstrapping Algorithm for Word Sense Disambiguation , 2001, Int. J. Artif. Intell. Tools.

[2]  Andreas Hotho,et al.  Conceptual User Tracking , 2003, AWIC.

[3]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[4]  Regina Barzilay,et al.  Using Lexical Chains for Text Summarization , 1997 .

[5]  Christiane Fellbaum,et al.  Combining Local Context and Wordnet Similarity for Word Sense Identification , 1998 .

[6]  Kathleen F. McCoy,et al.  Efficiently Computed Lexical Chains as an Intermediate Representation for Automatic Text Summarization , 2002, CL.

[7]  Tao Luo,et al.  Integrating Web Usage and Content Mining for More Effective Personalization , 2000, EC-Web.

[8]  Gerhard Weikum,et al.  Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data , 2003, WebDB.

[9]  Martin Chodorow,et al.  Combining local context and wordnet similarity for word sense identification , 1998 .

[10]  Bamshad Mobasher,et al.  Using Ontologies to Discover Domain-Level Web Usage Profiles , 2002 .

[11]  Magdalini Eirinaki,et al.  NEW APPROACHES TO WEB PERSONALIZATION , 2006 .

[12]  Johannes Fürnkranz,et al.  Link-Local Features for Hypertext Classification , 2005, EWMF/KDO.

[13]  Antonio Picariello,et al.  A web personalization system based on web usage mining techniques , 2004, WWW Alt. '04.

[14]  Michalis Vazirgiannis,et al.  Web personalization integrating content semantics and navigational patterns , 2004, WIDM '04.

[15]  Qigang Gao,et al.  Integrating Web Content Clustering into Web Log Association Rule Mining , 2005, Canadian AI.

[16]  George A. Miller,et al.  Using Corpus Statistics and WordNet Relations for Sense Identification , 1998, CL.

[17]  Sarabjot Singh Anand,et al.  Employing a domain ontology to gain insights into user behaviour , 2005 .

[18]  Michael E. Lesk,et al.  Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone , 1986, SIGDOC '86.

[19]  Iraklis Varlamis,et al.  SEWeP: using site semantics and a taxonomy to enhance the Web personalization process , 2003, KDD '03.

[20]  Michalis Vazirgiannis,et al.  SEWeP: A Web Mining System Supporting Semantic Personalization , 2004, PKDD.

[21]  Hans-Peter Kriegel,et al.  Incremental Clustering for Mining in a Data Warehousing Environment , 1998, VLDB.

[22]  Paola Velardi,et al.  Structural semantic interconnections: a knowledge-based approach to word sense disambiguation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Kathleen McKeown,et al.  Improving Word Sense Disambiguation in Lexical Chaining , 2003, IJCAI.

[24]  Gerhard Weikum,et al.  Word Sense Disambiguation for Exploiting Hierarchical Thesauri in Text Classification , 2005, PKDD.

[25]  Stuart E. Middleton,et al.  Ontological user profiling in recommender systems , 2004, TOIS.

[26]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[27]  P. C. Wong,et al.  Generalized vector spaces model in information retrieval , 1985, SIGIR '85.

[28]  Stephan Bloehdorn,et al.  Boosting for Text Classification with Semantic Features , 2004, WebKDD.

[29]  Eneko Agirre,et al.  A Proposal for Word Sense Disambiguation using Conceptual Distance , 1995, ArXiv.

[30]  Iraklis Varlamis,et al.  THESUS, a closer view on Web content management enhanced with link semantics , 2004, IEEE Transactions on Knowledge and Data Engineering.

[31]  Paola Velardi,et al.  Structural semantic interconnection: a knowledge-based approach to Word Sense Disambiguation , 2004, SENSEVAL@ACL.

[32]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[33]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[34]  C. Fellbaum An Electronic Lexical Database , 1998 .

[35]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[36]  Sreangsu Acharyya Context-Sensitive Modeling of Web-Surfing Behaviour using Concept Trees , 2003 .

[37]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 1999, Artif. Intell..

[38]  Dekang Lin,et al.  An Information-Theoretic Definition of Similarity , 1998, ICML.

[39]  Martha Palmer,et al.  Verb Semantics and Lexical Selection , 1994, ACL.

[40]  Rada Mihalcea,et al.  PageRank on Semantic Networks, with Application to Word Sense Disambiguation , 2004, COLING.

[41]  Andreas Hotho,et al.  Towards Semantic Web Mining , 2002, SEMWEB.

[42]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[43]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[44]  Steffen Staab,et al.  Ontologies improve text document clustering , 2003, Third IEEE International Conference on Data Mining.

[45]  Eneko Agirre,et al.  Word Sense Disambiguation using Conceptual Density , 1996, COLING.

[46]  Michalis Vazirgiannis,et al.  Archiving the Greek Web , 2004 .

[47]  Fabrizio Silvestri,et al.  An Online Recommender System for Large Web Sites , 2004, IEEE/WIC/ACM International Conference on Web Intelligence (WI'04).

[48]  G. Rigau,et al.  Combining Knowledge- and Corpus-based Word-Sense-Disambiguation Methods , 2005, J. Artif. Intell. Res..

[49]  Michael Sussna,et al.  Word sense disambiguation for free-text indexing using a massive semantic network , 1993, CIKM '93.

[50]  Eneko Agirre,et al.  Combining Unsupervised Lexical Knowledge Methods for Word Sense Disambiguation , 1997, ACL.

[51]  Xin Jin,et al.  A maximum entropy web recommendation system: combining collaborative and content features , 2005, KDD '05.

[52]  Jon M. Kleinberg,et al.  Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text , 1998, Comput. Networks.

[53]  Iraklis Varlamis,et al.  THESUS: Organizing Web document collections based on link semantics , 2003, The VLDB Journal.