Z-Transform and preconditioning techniques for option pricing

In the present paper, we convert the usual n-step backward recursion that arises in option pricing into a set of independent integral equations by using a z-transform approach. In order to solve these equations, we consider different quadrature procedures that transform the integral equation into a linear system that we solve by iterative algorithms and we study the benefits of suitable preconditioning techniques. We show the relevance of our procedure in pricing options (such as plain vanilla, lookback, single and double barrier options) when the underlying evolves according to an exponential Lévy process.

[1]  Gianluca Fusai,et al.  Pricing Discretely Monitored Asian Options by Maturity Randomization , 2011, SIAM J. Financial Math..

[2]  Gianluca Fusai,et al.  Option pricing, maturity randomization and distributed computing , 2010, Parallel Comput..

[3]  Vadim Linetsky,et al.  Computing exponential moments of the discrete maximum of a Lévy process and lookback options , 2008, Finance Stochastics.

[4]  M. C. Recchioni,et al.  Lévy processes and option pricing by recursive quadrature , 2009 .

[5]  Liming Feng,et al.  PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH , 2008 .

[6]  Sebastian Jaimungal,et al.  Fourier Space Time-Stepping for Option Pricing With Levy Models , 2007 .

[7]  M. C. Recchioni,et al.  Analysis of quadrature methods for pricing discrete barrier options , 2007 .

[8]  R. Lord,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options Under Levy Processes , 2007 .

[9]  Denis Belomestny,et al.  Spectral calibration of exponential Lévy models , 2006, Finance Stochastics.

[10]  I. David Abrahams,et al.  An exact analytical solution for discrete barrier options , 2006, Finance Stochastics.

[11]  Wim Schoutens,et al.  Exotic Option Pricing and Advanced Lévy Models , 2005 .

[12]  Y. Yamamoto,et al.  A Double-Exponential Fast Gauss Transform Algorithm for Pricing Discrete Path-Dependent Options , 2005, Oper. Res..

[13]  Stefano Serra Capizzano,et al.  Preconditioning strategies for non‐Hermitian Toeplitz linear systems , 2005, Numer. Linear Algebra Appl..

[14]  M. Airoldi A moment expansion approach to option pricing , 2005 .

[15]  A. Wathen,et al.  Iterative Methods for Toeplitz Systems , 2005 .

[16]  E. Eberlein,et al.  SYMMETRIES AND PRICING OF EXOTIC OPTIONS IN LÉVY MODELS , 2005 .

[17]  Stefano Serra Capizzano,et al.  Matrix algebra preconditioners for multilevel Toeplitz systems do not insure optimal convergence rate , 2004, Theor. Comput. Sci..

[18]  Stefano Serra Capizzano,et al.  Preconditioning Strategies for Hermitian Indefinite Toeplitz Linear Systems , 2004, SIAM J. Sci. Comput..

[19]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[20]  Stefano Serra Capizzano,et al.  How to prove that a preconditioner cannot be superlinear , 2003, Math. Comput..

[21]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[22]  P. Duck,et al.  Universal option valuation using quadrature methods , 2003 .

[23]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[24]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[25]  Michael Sullivan Pricing discretely monitored barrier options , 2000 .

[26]  Mark Broadie,et al.  Connecting discrete and continuous path-dependent options , 1999, Finance Stochastics.

[27]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[28]  M. Ng,et al.  Preconditioners for Wiener--Hopf Equations with High-Order Quadrature Rules , 1997 .

[29]  C. O'Cinneide Euler summation for fourier series and laplace transform inversion , 1997 .

[30]  P. Carr Randomization and the American Put , 1996 .

[31]  M. Yor,et al.  PRICING AND HEDGING DOUBLE-BARRIER OPTIONS: A PROBABILISTIC APPROACH , 1996 .

[32]  T. Philips,et al.  The Moment Bound is Tighter than Chernoff's Bound for Positive Tail Probabilities , 1995 .

[33]  A. Eydeland A fast algorithm for computing integrals in function spaces: Financial applications , 1994 .

[34]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[35]  Ward Whitt,et al.  Numerical inversion of probability generating functions , 1992, Oper. Res. Lett..

[36]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .