Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions

Abstract To avoid the order reduction when third order implicit–explicit Runge–Kutta time discretization is used together with the local discontinuous Galerkin (LDG) spatial discretization, for solving convection–diffusion problems with time-dependent Dirichlet boundary conditions, we propose a strategy of boundary treatment at each intermediate stage in this paper. The proposed strategy can achieve optimal order of accuracy by numerical verification. Also by suitably setting numerical flux on the boundary in the LDG methods, and by establishing an important relationship between the gradient and interface jump of the numerical solution with the independent numerical solution of the gradient and the given boundary conditions, we build up the unconditional stability of the corresponding scheme, in the sense that the time step is only required to be upper bounded by a suitable positive constant, which is independent of the mesh size.

[1]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations , 2009 .

[2]  Haijin Wang,et al.  Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems , 2015, SIAM J. Numer. Anal..

[3]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[4]  Jan Verwer,et al.  Convergence and order reduction of diagonally implicit Runge-Kutta schemes in the method of lines , 1985 .

[5]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[6]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[7]  D. Pathria,et al.  The Correct Formulation of Intermediate Boundary Conditions for Runge-Kutta Time Integration of Initial Boundary Value Problems , 1997, SIAM J. Sci. Comput..

[8]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[9]  Eli Turkel,et al.  On Numerical Boundary Treatment of Hyperbolic Systems for Finite Difference and Finite Element Methods , 1982 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Mari Paz Calvo,et al.  Avoiding the order reduction of Runge-Kutta methods for linear initial boundary value problems , 2002, Math. Comput..

[12]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[13]  David I. Gottlieb,et al.  On the Removal of Boundary Errors Caused by Runge-Kutta Integration of Nonlinear Partial Differential Equations , 1994, SIAM J. Sci. Comput..

[14]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[15]  Qiang Zhang,et al.  Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Linear Conservation Law with Inflow Boundary Condition , 2011, J. Sci. Comput..

[16]  J. M. Sanz-Serna,et al.  Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations , 1987 .

[17]  Qiang Zhang,et al.  Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems , 2016 .

[18]  David I. Gottlieb,et al.  The Theoretical Accuracy of Runge-Kutta Time Discretizations for the Initial Boundary Value Problem: A Study of the Boundary Error , 1995, SIAM J. Sci. Comput..

[19]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[20]  Haijin Wang,et al.  Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems , 2016, Appl. Math. Comput..

[21]  Isaías Alonso-Mallo,et al.  Runge-Kutta methods without order reduction for linear initial boundary value problems , 2002, Numerische Mathematik.

[22]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[23]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  Bo Dong,et al.  Analysis of a Local Discontinuous Galerkin Method for Linear Time-Dependent Fourth-Order Problems , 2009, SIAM J. Numer. Anal..

[26]  Toshiyuki Koto,et al.  IMEX Runge-Kutta schemes for reaction-diffusion equations , 2008 .

[27]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[28]  Yinhua Xia,et al.  Efficient time discretization for local discontinuous Galerkin methods , 2007 .

[29]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[30]  Haijin Wang,et al.  ERROR ESTIMATE ON A FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR CONVECTION-DIFFUSION PROBLEM * , 2013 .

[31]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[32]  Chi-Wang Shu,et al.  Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations , 2016, J. Comput. Phys..