The formation of galaxy discs

Galaxy disk formation must incorporate the multiphase nature of the interstellar medium. The resulting two-phase structure is generated and maintained by gravitational instability and supernova energy input, which yield a source of turbulent viscosity that is able to effectively compete in the protodisk phase with early angular momentum loss of the baryonic component via dynamical friction in the dark halo. Provided that star formation occurs on the viscous drag time-scale, this mechanism provides a means of accounting for disk sizes and radial profiles. The star formation feedback is self-regulated by turbulent gas pressure-limited percolation of the supernova remnant-heated hot phase, but can run away in gas-rich protodisks to generate compact starbursts. A simple analytic model is derived for a Schmidt-like global star formation law in terms of the cold gas volume density.

[1]  G. Efstathiou A model of supernova feedback in galaxy formation , 2000, astro-ph/0002245.

[2]  N. Vogt,et al.  The Magnitude-Size Relation of Galaxies out to z ∼ 1 , 1999, astro-ph/9902147.

[3]  C. Martin Properties of Galactic Outflows: Measurements of the Feedback from Star Formation , 1998, astro-ph/9810233.

[4]  ApJ, in press , 1999 .

[5]  J. Silk,et al.  Star Formation and Chemical Evolution in the Milky Way: Cosmological Implications , 1998 .

[6]  R. Wyse,et al.  Discovery of Recent Star Formation in the Extreme Outer Regions of Disk Galaxies , 1998, astro-ph/9808151.

[7]  Matthias Steinmetz,et al.  The Cosmological Origin of the Tully-Fisher Relation , 1998, astro-ph/9808076.

[8]  S. White,et al.  The evolution of galactic discs , 1998 .

[9]  G. Efstathiou,et al.  Formation of disc galaxies , 1998, astro-ph/9802311.

[10]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[11]  J. Brinchmann,et al.  Hubble Space Telescope Imaging of the CFRS and LDSS Redshift Surveys. II. Structural Parameters and the Evolution of disk Galaxies to z ~ 11 , 1997, astro-ph/9712061.

[12]  Jonathan P. Williams,et al.  The Galactic Distribution of OB Associations in Molecular Clouds , 1997 .

[13]  J. Silk Feedback, Disk Self-Regulation, and Galaxy Formation , 1996, astro-ph/9612117.

[14]  Matthias Steinmetz,et al.  The Effects of a Photoionizing Ultraviolet Background on the Formation of Disk Galaxies , 1996, astro-ph/9605043.

[15]  K. Ferrière The Hot Gas Filling Factor in the Vicinity of the Sun , 1995 .

[16]  J. Silk A Theory for the Initial Mass Function , 1995 .

[17]  D. Cox,et al.  Evolution of Supernova Remnant Bubbles in a Warm Diffuse Medium: Survey of Results from One-dimensional Models and Their Impact on Estimates of Interstellar Porosity , 1993 .

[18]  C. Clarke Solar neighbourhood constraints on viscous models for galactic discs , 1991 .

[19]  R. Kennicutt The Star Formation Law in Galactic Disks , 1989 .

[20]  C. Clarke Chemical evolution of viscously evolving galactic discs , 1989 .

[21]  Antony A. Stark,et al.  Kinematics of molecular clouds. II. New data on nearby giant molecular clouds , 1989 .

[22]  E. Bertschinger,et al.  Dynamics of radiative supernova remnants , 1988 .

[23]  D. Lin,et al.  The Formation of the Exponential Disk in Spiral Galaxies , 1987 .

[24]  J. E. Pringle,et al.  A viscosity prescription for a self-gravitating accretion disc⋆ , 1987 .

[25]  J. Silk,et al.  Dissipational galaxy formation - Confrontation with observations , 1981 .

[26]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .