Integration of three functional layers constructed simultaneously in combustion process for reversible zinc anode

[1]  L. Archer,et al.  Toward practical aqueous zinc-ion batteries for electrochemical energy storage , 2022, Joule.

[2]  Luyi Yang,et al.  Progress in interface structure and modification of zinc anode for aqueous batteries , 2022, Nano Energy.

[3]  Li-zhen Fan,et al.  Manipulating Alloying Reaction to Achieve the Stable and Dendrite-free Zinc Metal Anodes , 2022, Chemical Engineering Journal.

[4]  Libao Chen,et al.  Ultra-Stable Zn Metal Batteries with Dendrite-Free Cu-Sn Alloy Induced High-Quality Composite Zn Mesh , 2022, SSRN Electronic Journal.

[5]  Yongfu Zhu,et al.  Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery , 2022, Nano-Micro Letters.

[6]  Yunhui Huang,et al.  Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition , 2022, Nature Communications.

[7]  Kwan-Woo Nam,et al.  Metal–Organic Framework for Dendrite-Free Anodes in Aqueous Rechargeable Zinc Batteries , 2022, Electrochimica Acta.

[8]  Xiaogang Zhang,et al.  Recent Progress and Prospects on Dendrite‐free Engineerings for Aqueous Zinc Metal Anodes , 2022, ENERGY & ENVIRONMENTAL MATERIALS.

[9]  Wenshuai Chen,et al.  Mechanistic Study of Interfacial Modification for Stable Zn Anode Based on a Thin Separator. , 2022, Small.

[10]  Yanhong Yin,et al.  Zn–Sn alloy anode with repressible dendrite grown and meliorative corrosion resistance for Zn-air battery , 2022, Journal of Power Sources.

[11]  Zhengbing Qi,et al.  Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries. , 2022, Small.

[12]  X. Lou,et al.  Nitrogen‐Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Zn‐Metal Anodes , 2022, Advanced materials.

[13]  Zhengbing Qi,et al.  Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. , 2022, Nano letters.

[14]  Xingyuan Gao,et al.  Zincophilic Cu Sites Induce Dendrite‐Free Zn Anodes for Robust Alkaline/Neutral Aqueous Batteries , 2021, Advanced Functional Materials.

[15]  Jiang Zhou,et al.  Interfacial Engineering Strategy for High-Performance Zn Metal Anodes , 2021, Nano-Micro Letters.

[16]  J. Xue,et al.  Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode , 2021, Chemical Engineering Journal.

[17]  Yongchang Liu,et al.  Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase , 2021, Energy Storage Materials.

[18]  Chenyang Zhao,et al.  A Dynamic and Self‐Adapting Interface Coating for Stable Zn‐Metal Anodes , 2021, Advanced materials.

[19]  Lei Gao,et al.  Sn Alloying to Inhibit Hydrogen Evolution of Zn Metal Anode in Rechargeable Aqueous Batteries , 2021, Advanced Functional Materials.

[20]  R. Ahuja,et al.  How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression , 2021 .

[21]  Yitai Qian,et al.  Stable Aqueous Anode‐Free Zinc Batteries Enabled by Interfacial Engineering , 2021, Advanced Functional Materials.

[22]  L. Archer,et al.  Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding , 2021, Nature Energy.

[23]  Lili Liu,et al.  An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc‐Based Batteries , 2021, Advanced science.

[24]  Wei-min Kang,et al.  Spontaneous Growth of Alkali Metal Ion-Preintercalated Vanadium Pentoxide for High-Performance Aqueous Zinc-Ion Batteries , 2021 .

[25]  Yi Cui,et al.  A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2. , 2021, Journal of the American Chemical Society.

[26]  Guobao Xu,et al.  Free-standing composite of NaxV2O5•nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries , 2021, Electrochimica Acta.

[27]  Luyi Yang,et al.  Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries , 2021, Nano Energy.

[28]  Xiaobo Ji,et al.  Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery , 2021 .

[29]  Zaiping Guo,et al.  Boosting Zn electrode reversibility in aqueous electrolyte using low-cost antisolvents. , 2021, Angewandte Chemie.

[30]  D. Brett,et al.  Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives , 2021, ACS Energy Letters.

[31]  Huakun Liu,et al.  Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries , 2020, Chemical Engineering Journal.

[32]  Zhiqiang Niu,et al.  Energy Storage Chemistry in Aqueous Zinc Metal Batteries , 2020 .

[33]  Jiayan Luo,et al.  Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy , 2020 .

[34]  W. Mai,et al.  Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries. , 2020, Small.

[35]  Yongming Sun,et al.  Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries , 2020 .

[36]  Yi Xie,et al.  Surface/interface nanoengineering for rechargeable Zn–air batteries , 2020 .

[37]  Q. Jiang,et al.  Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries , 2020, Nature Communications.

[38]  Huamin Zhang,et al.  Dendrite‐Free Zinc Deposition Induced by Tin‐Modified Multifunctional 3D Host for Stable Zinc‐Based Flow Battery , 2019, Advanced materials.

[39]  G. Cui,et al.  Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation , 2019, Nature Communications.

[40]  Yongyao Xia,et al.  A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes , 2019, Joule.

[41]  Fei Wang,et al.  Highly reversible zinc metal anode for aqueous batteries , 2018, Nature Materials.

[42]  Barack Obama,et al.  The irreversible momentum of clean energy , 2017, Science.

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Dongrui Wang,et al.  Highly reversible zinc metal anodes enabled by three-dimensional silver host for aqueous batteries , 2022, Journal of Materials Chemistry A.