Role of Sigma-1 Receptors in the Regulation of Heart Function: II. Cardioprotective Role of Sigma-1 Receptors

[1]  K. Jeevaratnam,et al.  Is the sigma-1 receptor a potential pharmacological target for cardiac pathologies? A systematic review , 2019, International journal of cardiology. Heart & vasculature.

[2]  Shao-bo Shi,et al.  Chronic inhibition of the sigma-1 receptor exacerbates atrial fibrillation susceptibility in rats by promoting atrial remodeling. , 2019, Life sciences.

[3]  Shao-bo Shi,et al.  Chronic stimulation of the sigma-1 receptor ameliorates autonomic nerve dysfunction and atrial fibrillation susceptibility in a rat model of depression. , 2018, American journal of physiology. Heart and circulatory physiology.

[4]  M. Bhuiyan,et al.  Cardiac Dysfunction in the Sigma 1 Receptor Knockout Mouse Associated With Impaired Mitochondrial Dynamics and Bioenergetics , 2018, Journal of the American Heart Association.

[5]  S. Seredenin,et al.  On the Mechanism of the Cardioprotective Action of σ1 Receptor Agonist Anxiolytic Fabomotizole Hydrochloride (Afobazole) , 2018, Bulletin of Experimental Biology and Medicine.

[6]  I. Sukhanova,et al.  Epac Proteins and Calmodulin as Possible Arrhythmogenesis Trigger in Alcoholic Cardiomyopathy , 2018, Bulletin of Experimental Biology and Medicine.

[7]  Сергей Александрович Крыжановский,et al.  A translational model of chronic heart failure in rats , 2018, ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia».

[8]  S. Smirnova,et al.  Atria Depolarization in Rats with Alcoholic Cardiomyopathy , 2018, Doklady Biological Sciences.

[9]  S. Kryzhanovskii,et al.  Delayed Results of Experimental Afobazole Therapy in Rats after Acute Myocardial Infarction , 2017, Bulletin of Experimental Biology and Medicine.

[10]  Chuan Jiang,et al.  Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway , 2017, Clinical and experimental pharmacology & physiology.

[11]  Xiaojing Liu,et al.  MicroRNA‐297 promotes cardiomyocyte hypertrophy via targeting sigma‐1 receptor , 2017, Life sciences.

[12]  Y. Mizoguchi,et al.  Microglial Intracellular Ca2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders , 2017, Front. Cell. Neurosci..

[13]  G. Gray,et al.  Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium , 2016, Journal of molecular endocrinology.

[14]  T. Minamino,et al.  Physiological and pathological cardiac hypertrophy. , 2016, Journal of molecular and cellular cardiology.

[15]  K. Fukunaga,et al.  Haloperidol aggravates transverse aortic constriction-induced heart failure via mitochondrial dysfunction. , 2016, Journal of pharmacological sciences.

[16]  H. Jia,et al.  Methylophiopogonanone A suppresses ischemia/reperfusion-induced myocardial apoptosis in mice via activating PI3K/Akt/eNOS signaling pathway , 2016, Acta Pharmacologica Sinica.

[17]  T. Su,et al.  A role for sigma receptors in stimulant self-administration and addiction , 2016, Behavioural pharmacology.

[18]  H. Diao,et al.  Pathophysiological role of osteopontin and angiotensin II in atherosclerosis. , 2016, Biochemical and biophysical research communications.

[19]  Lin-xi Chen,et al.  Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases , 2016, Acta Pharmacologica Sinica.

[20]  Wen Gao,et al.  Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress , 2016, Acta Pharmacologica Sinica.

[21]  J. Cidlowski,et al.  Glucocorticoid signaling in the heart: A cardiomyocyte perspective , 2015, The Journal of Steroid Biochemistry and Molecular Biology.

[22]  F. Han,et al.  IRE1α-XBP1 Pathway Is Activated Upon Induction of Single-Prolonged Stress in Rat Neurons of the Medial Prefrontal Cortex , 2015, Journal of Molecular Neuroscience.

[23]  Z. Du,et al.  Brain-Derived Neurotrophic Factor Regulates TRPC3/6 Channels and Protects Against Myocardial Infarction in Rodents , 2015, International journal of biological sciences.

[24]  H. Tsai,et al.  Antipsychotic Drugs and the Risk of Ventricular Arrhythmia and/or Sudden Cardiac Death: A Nation‐wide Case‐Crossover Study , 2015, Journal of the American Heart Association.

[25]  H. Huikuri Psychotropic Medications and the Risk of Sudden Cardiac Death , 2015, Journal of the American Heart Association.

[26]  Xun Ai,et al.  Connexin40 abnormalities and atrial fibrillation in the human heart. , 2014, Journal of molecular and cellular cardiology.

[27]  K. Fukunaga,et al.  Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through σ(1)-receptor in hypertrophic cardiomyocytes. , 2014, Life sciences.

[28]  V. Adam,et al.  Haloperidol cytotoxicity and its relation to oxidative stress. , 2013, Mini reviews in medicinal chemistry.

[29]  K. Fukunaga,et al.  Vascular endothelial σ1-receptor stimulation with SA4503 rescues aortic relaxation via Akt/eNOS signaling in ovariectomized rats with aortic banding. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[30]  S. Seredenin,et al.  On the Mechanism of Anti-Ischemic Effects of Afobazole , 2013, Bulletin of Experimental Biology and Medicine.

[31]  K. Fukunaga,et al.  Diverse regulation of IP3 and ryanodine receptors by pentazocine through σ1-receptor in cardiomyocytes. , 2013, American journal of physiology. Heart and circulatory physiology.

[32]  K. Fukunaga,et al.  Crucial interactions between selective serotonin uptake inhibitors and sigma-1 receptor in heart failure. , 2013, Journal of pharmacological sciences.

[33]  K. Hashimoto Sigma-1 receptor chaperone and brain-derived neurotrophic factor: Emerging links between cardiovascular disease and depression , 2013, Progress in Neurobiology.

[34]  J. Cidlowski,et al.  Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. , 2012, Endocrinology.

[35]  R. Passman,et al.  Contribution of Fibrosis and the Autonomic Nervous System to Atrial Fibrillation Electrograms in Heart Failure , 2012, Circulation. Arrhythmia and electrophysiology.

[36]  Teruo Hayashi,et al.  Sigma‐1 receptor chaperones regulate the secretion of brain‐derived neurotrophic factor , 2012, Synapse.

[37]  K. Fukunaga,et al.  Distinct cardioprotective effects of 17&bgr;-estradiol and dehydroepiandrosterone on pressure overload–induced hypertrophy in ovariectomized female rats , 2011, Menopause.

[38]  I. Komuro,et al.  Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy , 2011, Hypertension.

[39]  K. Fukunaga,et al.  Dehydroepiandrosterone-mediated stimulation of sigma-1 receptor activates Akt-eNOS signaling in the thoracic aorta of ovariectomized rats with abdominal aortic banding. , 2011, Cardiovascular therapeutics.

[40]  E. Chevet,et al.  Sig1R Protein Regulates hERG Channel Expression through a Post-translational Mechanism in Leukemic Cells* , 2011, The Journal of Biological Chemistry.

[41]  X. Navarro,et al.  Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury. , 2011, Journal of neurotrauma.

[42]  A. V. Sorokina,et al.  Study of Anti-Ischemic Effect of Afobazole in Experimental Myocardial Infarction , 2011, Bulletin of Experimental Biology and Medicine.

[43]  K. Fukunaga,et al.  Targeting sigma-1 receptor signaling by endogenous ligands for cardioprotection , 2011, Expert opinion on therapeutic targets.

[44]  M. Nováková,et al.  Haloperidol increases expression of the inositol 1,4,5-trisphosphate receptors in rat cardiac atria, but not in ventricles. , 2010, General physiology and biophysics.

[45]  K. Fukunaga,et al.  Targeting sigma-1 receptor with fluvoxamine ameliorates pressure-overload-induced hypertrophy and dysfunctions , 2010, Expert opinion on therapeutic targets.

[46]  K. Mikoshiba,et al.  The IP3 Receptor Regulates Cardiac Hypertrophy in Response to Select Stimuli , 2010, Circulation research.

[47]  S. Seredenin,et al.  On the Mechanism of Antifibrillatory Effect of Afobazole , 2010, Bulletin of Experimental Biology and Medicine.

[48]  M. Luchtefeld,et al.  Angiotensin II type 1 receptor blockade: high hopes sent back to reality? , 2009, Minerva cardioangiologica.

[49]  M. Bootman,et al.  Increased InsP3Rs in the junctional sarcoplasmic reticulum augment Ca2+ transients and arrhythmias associated with cardiac hypertrophy , 2009, Proceedings of the National Academy of Sciences.

[50]  岡田 将 Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway , 2009 .

[51]  M. Mattson,et al.  Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease , 2008, Annals of the New York Academy of Sciences.

[52]  T. Nakaki,et al.  Chronic treatment with a selective ligand for the sigma-1 receptor chaperone, SA4503, up-regulates BDNF protein levels in the rat hippocampus , 2008, Neuroscience Letters.

[53]  J. Skepper,et al.  Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart , 2008, Pflügers Archiv - European Journal of Physiology.

[54]  P. Hurn,et al.  Sigma 1 Receptor Agonists Act as Neuroprotective Drugs Through Inhibition of Inducible Nitric Oxide Synthase , 2006, Anesthesia and analgesia.

[55]  Teruo Hayashi,et al.  Chronic Antidepressants Potentiate via Sigma-1 Receptors the Brain-derived Neurotrophic Factor-induced Signaling for Glutamate Release* , 2006, Journal of Biological Chemistry.

[56]  P. Gallagher,et al.  Reduced plasma levels of NGF and BDNF in patients with acute coronary syndromes. , 2005, International journal of cardiology.

[57]  S. Yamawaki,et al.  β-Estradiol, Dehydroepiandrosterone, and Dehydroepiandrosterone Sulfate Protect against N-Methyl-d-aspartate-Induced Neurotoxicity in Rat Hippocampal Neurons by Different Mechanisms , 2004, Journal of Pharmacology and Experimental Therapeutics.

[58]  G. Rousseau,et al.  Functional and autoradiographic characterization of dopamine D2-like receptors in the guinea pig heart. , 2002, Canadian journal of physiology and pharmacology.

[59]  D. Morin,et al.  [Are sigma receptors implicated in ischemic injury?]. , 2001, Therapie.

[60]  R. Matsumoto,et al.  Correlation between neuroleptic binding to σ1 and σ2 receptors and acute dystonic reactions , 2000 .

[61]  B Attali,et al.  The inhibitory effect of the antipsychotic drug haloperidol on HERG potassium channels expressed in Xenopus oocytes , 1997, British journal of pharmacology.

[62]  Y. Minabe,et al.  Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. , 1996, European journal of pharmacology.

[63]  W. Bowen,et al.  Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine D-2 receptors. , 1990, European journal of pharmacology.

[64]  B. A.,et al.  Sudden Death , 1855, Developments in Cardiovascular Medicine.

[65]  H. Mösslacher [Alcoholic cardiomyopathy]. , 1973, Wiener klinische Wochenschrift. Supplementum.