On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material

Abstract The paper proposes a new consistent formulation of polycrystalline finite-strain elasto-plasticity coupling kinematics and thermodynamics with damage using an extended multiplicative decomposition of the deformation gradient that accounts for temperature effects. The macroscopic deformation gradient comprises four terms: thermal deformation associated with the thermal expansion, the deviatoric plastic deformation attributed to the history of dislocation glide/movement, the volumetric deformation gradient associated with dissipative volume change of the material, and the elastic or recoverable deformation associated with the lattice rotation/stretch. Such a macroscopic decomposition of the deformation gradient is physically motivated by the mechanisms underlying lattice deformation, plastic flow, and evolution of damage in polycrystalline materials. It is shown that prescribing plasticity and damage evolution equations in their physical intermediate configurations leads to physically justified evolution equations in the current configuration. In the past, these equations have been modified in order to represent experimentally observed behavior with regard to damage evolution, whereas in this paper, these modifications appear naturally through mappings by the multiplicative decomposition of the deformation gradient. The prescribed kinematics captures precisely the damage deformation (of any rank) and does not require introducing a fictitious undamaged configuration or mechanically equivalent of the real damaged configuration as used in the past.

[1]  F. A. Leckie,et al.  Representation of Mechanical Behavior in the Presence of Changing Internal Structure , 1988 .

[2]  Paul Steinmann,et al.  A framework for geometrically nonlinear continuum damage mechanics , 1998 .

[3]  George Z. Voyiadjis,et al.  A coupled theory of damage mechanics and finite strain elasto-plasticity. I : Damage and elastic deformations , 1990 .

[4]  Sia Nemat-Nasser,et al.  Decomposition of strain measures and their rates in finite deformation elastoplasticity , 1979 .

[5]  L. Anand,et al.  A computational procedure for rate-independent crystal plasticity , 1996 .

[6]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[7]  Sumio Murakami,et al.  An irreversible thermodynamics theory for elastic-plastic-damage materials , 1998 .

[8]  S. Murakami,et al.  Mechanical Modeling of Material Damage , 1988 .

[9]  K. Hackl,et al.  Rate theory of nonlocal gradient damage-gradient viscoinelasticity , 2003 .

[10]  Golam Newaz,et al.  Ductile damage evolution under triaxial state of stress: theory and experiments , 2005 .

[11]  H. Schreyer,et al.  An anisotropic damage model with dilatation for concrete , 1988 .

[12]  Mark F. Horstemeyer,et al.  A physically motivated anisotropic tensorial representation of damage with separate functions for void nucleation, growth, and coalescence , 2007 .

[13]  George Z. Voyiadjis,et al.  On the coupling of anisotropic damage and plasticity models for ductile materials , 2003 .

[14]  Taehyo Park,et al.  Kinematic Description of Damage , 1998 .

[15]  S. R. Daniewicz,et al.  Analysis of crack tip plasticity for microstructurally small cracks using crystal plasticity theory , 2003 .

[16]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[17]  J. Rice Localization of plastic deformation , 1976 .

[18]  M. Ristinmaa,et al.  Thermomechanical response of non-local porous material , 2006 .

[19]  Dusan Krajcinovic,et al.  Some fundamental issues of damage mechanics , 1995 .

[20]  George Z. Voyiadjis,et al.  A coupled theory of damage mechanics and finite strain elasto-plasticity—II. Damage and finite strain plasticity , 1990 .

[21]  L. Davison Kinematics of finite elastoplastic deformation , 1995 .

[22]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[23]  C. L. Chow,et al.  An anisotropic model of damage mechanics based on endochronic theory of plasticity , 1992 .

[24]  E. Stein,et al.  On three-dimensional microcrack density distribution , 2001 .

[25]  M. Brünig Numerical analysis and elastic–plastic deformation behavior of anisotropically damaged solids , 2002 .

[26]  E. B. Marin,et al.  A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects , 2002 .

[27]  Michael Brünig,et al.  A ductile damage criterion at various stress triaxialities , 2008 .

[28]  T. Park,et al.  Kinematics of large elastoplastic damage deformation , 1998 .

[29]  Min Zhou,et al.  Modelling of micromechanical fracture using a cohesive finite element method , 2001 .

[30]  D. McDowell,et al.  A geometric framework for the kinematics of crystals with defects , 2005 .

[31]  Michael Brünig,et al.  An anisotropic ductile damage model based on irreversible thermodynamics , 2003 .

[32]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[33]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[34]  Dusan Krajcinovic,et al.  Damage tensors and the crack density distribution , 1993 .

[35]  Jean-Louis Chaboche,et al.  A review of some plasticity and viscoplasticity constitutive theories , 2008 .

[36]  G. Voyiadjis,et al.  Framework using functional forms of hardening internal state variables in modeling elasto-plastic-damage behavior , 2007 .

[37]  Ziad N. Taqieddin,et al.  Anisotropic damage-plasticity model for concrete , 2008 .

[38]  Kiran Nainmal Solanki Physically motivated internal state variable form of a higher order damage model for engineering materials with uncertainty , 2008 .

[39]  H. Zbib On the mechanics of large inelastic deformations: kinematics and constitutive modeling , 1993 .

[40]  M. Rashid,et al.  A constitutive algorithm for rate-dependent crystal plasticity , 1992 .

[41]  Anthony N. Palazotto,et al.  Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory , 2004 .

[42]  Baidurya Bhattacharya,et al.  Continuum damage mechanics analysis of fatigue crack initiation , 1998 .

[43]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[44]  Paul Steinmann,et al.  A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage , 2005 .

[45]  Mark Kachanov,et al.  Continuum Model of Medium with Cracks , 1980 .

[46]  Egidio Rizzi,et al.  A unified theory of elastic degradation and damage based on a loading surface , 1994 .

[47]  H. Stumpf,et al.  On a general concept for the analysis of crack growth and material damage , 2001 .

[48]  Douglas J. Bammann,et al.  A model of crystal plasticity containing a natural length scale , 2001 .

[49]  Taehyo Park,et al.  Chapter 16 – The Kinematics of Damage for Finite-Strain Elasto-Plastic Solids , 1999 .

[50]  Michael Brünig,et al.  Nonlocal continuum theory of anisotropically damaged metals , 2005 .

[51]  Viggo Tvergaard,et al.  Nonlocal plasticity effects on interaction of different size voids , 2004 .

[52]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[53]  D. Halm,et al.  An anisotropic model of damage and frictional sliding for brittle materials , 1998 .

[54]  Mark F. Horstemeyer,et al.  Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy , 2000 .

[55]  Mark F. Horstemeyer,et al.  An Anisotropic Damage Model for Ductile Metals , 2003 .

[56]  G. Voyiadjis SECTION 9.4 – Model of Inelastic Behavior Coupled to Damage , 2001 .

[57]  Rene B. Testa,et al.  Damage mechanics : basic variables in continuum theories , 1999 .

[58]  Ignacio Carol,et al.  Damage and plasticity in microplane theory , 1997 .

[59]  D. McDowell,et al.  Associative versus non-associative porous viscoplasticity based on internal state variable concepts , 1996 .

[60]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[61]  J. Betten Applications of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy , 1986 .

[62]  Diego J. Celentano,et al.  Experimental and numerical characterization of damage evolution in steels , 2007 .

[63]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[64]  O. W. Dillon,et al.  Thermodynamics of Elastic‐Plastic Materials as a Theory with Internal State Variables , 1969 .

[65]  Kanatani Ken-Ichi DISTRIBUTION OF DIRECTIONAL DATA AND FABRIC TENSORS , 1984 .

[66]  F. Sidoroff,et al.  Damage Induced Elastic Anisotropy , 1982 .

[67]  Jean-Louis Chaboche,et al.  Development of Continuum Damage Mechanics for Elastic Solids Sustaining Anisotropic and Unilateral Damage , 1993 .

[68]  Elias C. Aifantis,et al.  A damage model for ductile metals , 1989 .

[69]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[70]  Modeling of Anisotropic Damage for Ductile Materials in Metal Forming Processes , 2004 .