Channel capacity of polar coding with a given polar mismatched successive cancellation decoder

Arikan's polar coding, is by now a well studied technique that allows achieving the symmetric capacity of binary input memoryless channels with low complexity encoding and decoding, provided that the polar decoding architecture is used and the decoding metric is matched to the true channel. In this paper, we analyze communication rates that are achievable when the polar coding/decoding architecture is used with the decoder using an incorrect model of the channel. We define the `polar mismatched capacity' as an analogue of the classical mismatched capacity, give an expression for it, and derive bounds on it.

[1]  Saikat Guha,et al.  Polar Codes for Degradable Quantum Channels , 2011, IEEE Transactions on Information Theory.

[2]  Ephraim Zehavi,et al.  Decoding under integer metrics constraints , 1995, IEEE Trans. Commun..

[3]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[4]  R. Szekli Stochastic Ordering and Dependence in Applied Probability , 1995 .

[5]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[6]  Sriram Vishwanath,et al.  Polar Coding for Fading Channels: Binary and Exponential Channel Cases , 2013, IEEE Transactions on Communications.

[7]  Emmanuel Abbe,et al.  Randomness and Dependencies Extraction via Polarization, With Applications to Slepian–Wolf Coding and Secrecy , 2011, IEEE Transactions on Information Theory.

[8]  Rajai Nasser Erasure schemes using generalized polar codes: Zero-undetected-error capacity and performance trade-offs , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[9]  Erdal Arikan,et al.  On the Origin of Polar Coding , 2015, IEEE Journal on Selected Areas in Communications.

[10]  Michael Gastpar,et al.  Polar Codes for Broadcast Channels , 2013, IEEE Transactions on Information Theory.

[11]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[12]  Mine Alsan A novel partial order for the information sets of polar codes over B-DMCs , 2014, 2014 IEEE International Symposium on Information Theory.

[13]  Alex Samorodnitsky,et al.  The Zero-Undetected-Error Capacity Approaches the Sperner Capacity , 2013, IEEE Transactions on Information Theory.

[14]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[15]  Anelia Somekh-Baruch A General Formula for the Mismatch Capacity , 2015, IEEE Transactions on Information Theory.

[16]  S. Shamai,et al.  Information rates and error exponents of compound channels with application to antipodal signaling in a fading environment , 1993 .

[17]  Emre Telatar,et al.  Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit , 2000, IEEE Trans. Inf. Theory.

[18]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, PIMRC.

[19]  Michael Langberg,et al.  Asymmetric Error Correction and Flash-Memory Rewriting Using Polar Codes , 2014, IEEE Transactions on Information Theory.

[20]  Shlomo Shamai,et al.  Extremes of information combining , 2005, IEEE Transactions on Information Theory.

[21]  Alexander Barg,et al.  Polar Codes for $q$-Ary Channels, $q=2^{r}$ , 2013, IEEE Trans. Inf. Theory.

[22]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[23]  Emre Telatar,et al.  Polar Codes for the Two-User Multiple-Access Channel , 2010, IEEE Transactions on Information Theory.

[24]  Shlomo Shamai,et al.  On information rates for mismatched decoders , 1994, IEEE Trans. Inf. Theory.

[25]  Eren Sasoglu Polar Coding Theorems for Discrete Systems , 2011 .

[26]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[27]  Maxim Raginsky Channel polarization and Blackwell measures , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[28]  Emre Telatar,et al.  Polar Codes for the $m$-User Multiple Access Channel , 2012, IEEE Transactions on Information Theory.

[29]  Robert G. Gallager,et al.  New exponential upper bounds to error and erasure probabilities , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[30]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[31]  Kai Chen,et al.  Improved Successive Cancellation Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[32]  Caijun Zhong,et al.  A Split-Reduced Successive Cancellation List Decoder for Polar Codes , 2015, IEEE Journal on Selected Areas in Communications.

[33]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[34]  Joseph M. Renes,et al.  Achieving the capacity of any DMC using only polar codes , 2012, 2012 IEEE Information Theory Workshop.

[35]  Rajai Nasser,et al.  Polar Codes for Arbitrary DMCs and Arbitrary MACs , 2016, IEEE Transactions on Information Theory.

[36]  Vincent Y. F. Tan,et al.  The dispersion of nearest-neighbor decoding for additive non-Gaussian channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[37]  Bin Li,et al.  An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check , 2012, IEEE Communications Letters.

[38]  Erdal Arikan,et al.  A High-Throughput Energy-Efficient Implementation of Successive Cancellation Decoder for Polar Codes Using Combinational Logic , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Ido Tal A Simple Proof of Fast Polarization , 2017, IEEE Transactions on Information Theory.

[40]  Keshab K. Parhi,et al.  Low-Latency Sequential and Overlapped Architectures for Successive Cancellation Polar Decoder , 2013, IEEE Transactions on Signal Processing.

[41]  Albert Guillén i Fàbregas,et al.  Mismatched Decoding: Error Exponents, Second-Order Rates and Saddlepoint Approximations , 2013, IEEE Transactions on Information Theory.

[42]  Dennis Hui,et al.  Capacity-achieving rate-compatible polar codes , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).

[43]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[44]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[45]  Saikat Guha,et al.  Polar Codes for Classical-Quantum Channels , 2011, IEEE Transactions on Information Theory.

[46]  Private Communications , 2001 .

[47]  Toshiyuki Tanaka,et al.  Performance of polar codes with the construction using density evolution , 2009, IEEE Communications Letters.

[48]  Zhiyuan Yan,et al.  Symbol-Decision Successive Cancellation List Decoder for Polar Codes , 2015, IEEE Transactions on Signal Processing.

[49]  Vladimir B. Balakirsky Coding Theorem for Discrete Memoryless Channels with Given Decision Rule , 1991, Algebraic Coding.

[50]  Sennur Ulukus,et al.  Polar Coding for the General Wiretap Channel With Extensions to Multiuser Scenarios , 2016, IEEE Journal on Selected Areas in Communications.

[51]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[52]  Erdal Arikan,et al.  Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[53]  Ido Tal,et al.  Polar coding for processes with memory , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[54]  Albert Guillén i Fàbregas,et al.  Multiuser Random Coding Techniques for Mismatched Decoding , 2013, IEEE Transactions on Information Theory.

[55]  Vincent Y. F. Tan,et al.  On the Scaling Exponent of Polar Codes for Binary-Input Energy-Harvesting Channels , 2016, IEEE Journal on Selected Areas in Communications.

[56]  Emre Telatar,et al.  Polar codes for q-ary source coding , 2010, 2010 IEEE International Symposium on Information Theory.

[57]  Imre Csiszár,et al.  Channel capacity for a given decoding metric , 1995, IEEE Trans. Inf. Theory.

[58]  Andreas Schenk,et al.  Polar-Coded Modulation , 2013, IEEE Transactions on Communications.

[59]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[60]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.

[61]  Paul H. Siegel,et al.  Adaptive Read Thresholds for NAND Flash , 2015, IEEE Transactions on Communications.

[62]  Rudolf Ahlswede,et al.  Erasure, list, and detection zero-error capacities for low noise and a relation to identification , 1996, IEEE Trans. Inf. Theory.

[63]  Mine Alsan,et al.  Extremal Channels of Gallager's $E_{0}$ Under the Basic Polarization Transformations , 2014, IEEE Transactions on Information Theory.

[64]  Warren J. Gross,et al.  A Scalable Successive-Cancellation Decoder for Polar Codes , 2013, IEEE Transactions on Signal Processing.

[65]  Warren J. Gross,et al.  A Semi-Parallel Successive-Cancellation Decoder for Polar Codes , 2013, IEEE Transactions on Signal Processing.

[66]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.

[67]  Emre Telatar,et al.  Polarization for arbitrary discrete memoryless channels , 2009, 2009 IEEE Information Theory Workshop.

[68]  David Burshtein,et al.  Polar write once memory codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[69]  Imre Csiszár,et al.  Graph decomposition: A new key to coding theorems , 1981, IEEE Trans. Inf. Theory.

[70]  Amos Lapidoth,et al.  Mismatched decoding and the multiple-access channel , 1994, IEEE Trans. Inf. Theory.

[71]  Thomas M. Fischer Some Remarks on the Role of Inaccuracy in Shannon’s Theory of Information Transmission , 1978 .

[72]  Alexander Vardy,et al.  Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes , 2010, IEEE Transactions on Information Theory.

[73]  Remi A. Chou,et al.  Polar Coding for the Broadcast Channel With Confidential Messages: A Random Binning Analogy , 2016, IEEE Transactions on Information Theory.

[74]  Mine Alsan Performance of mismatched polar codes over BSCs , 2012, 2012 International Symposium on Information Theory and its Applications.

[75]  Alexios Balatsoukas-Stimming,et al.  LLR-Based Successive Cancellation List Decoding of Polar Codes , 2013, IEEE Transactions on Signal Processing.

[76]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[77]  Emre Telatar,et al.  A Simple Proof of Polarization and Polarization for Non-Stationary Memoryless Channels , 2016, IEEE Transactions on Information Theory.

[78]  In-Cheol Park,et al.  Efficient Sorting Architecture for Successive-Cancellation-List Decoding of Polar Codes , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[79]  Rüdiger L. Urbanke,et al.  Achieving Marton’s Region for Broadcast Channels Using Polar Codes , 2014, IEEE Transactions on Information Theory.

[80]  Erdal Arikan Bilkent Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, ISIT 2012.

[81]  Ivana Maric,et al.  Capacity-achieving rate-compatible polar codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[82]  Anelia Somekh-Baruch On Achievable Rates and Error Exponents for Channels With Mismatched Decoding , 2015, IEEE Transactions on Information Theory.

[83]  Joseph Y. N. Hui,et al.  Fundamental issues of multiple accessing , 1983 .

[84]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[85]  Alexios Balatsoukas-Stimming,et al.  Hardware Architecture for List Successive Cancellation Decoding of Polar Codes , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[86]  Toshiyuki Tanaka,et al.  Source and Channel Polarization Over Finite Fields and Reed–Solomon Matrices , 2012, IEEE Transactions on Information Theory.

[87]  Aria Ghasemian Sahebi,et al.  Multilevel Channel Polarization for Arbitrary Discrete Memoryless Channels , 2013, IEEE Transactions on Information Theory.

[88]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[89]  Anelia Somekh-Baruch,et al.  A Counter-Example to the Mismatched Decoding Converse for Binary-Input Discrete Memoryless Channels , 2015, IEEE Transactions on Information Theory.

[90]  Mine Alsan,et al.  Re-proving Channel Polarization Theorems: An Extremality and Robustness Analysis , 2014, ArXiv.

[91]  Alexander Vardy,et al.  Fast List Decoders for Polar Codes , 2015, IEEE Journal on Selected Areas in Communications.

[92]  Zhiyuan Yan,et al.  A High Throughput List Decoder Architecture for Polar Codes , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[93]  Remi A. Chou,et al.  Polar coding for secret-key generation , 2013, 2013 IEEE Information Theory Workshop (ITW).

[94]  Alexander Barg,et al.  Polar codes for q-ary channels, q =2r , 2011, 2012 IEEE International Symposium on Information Theory Proceedings.

[95]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[96]  Chi-Ying Tsui,et al.  A Low-Latency List Successive-Cancellation Decoding Implementation for Polar Codes , 2016, IEEE Journal on Selected Areas in Communications.

[97]  Amos Lapidoth,et al.  Nearest neighbor decoding for additive non-Gaussian noise channels , 1996, IEEE Trans. Inf. Theory.

[98]  Emre Telatar,et al.  Polarization as a novel architecture to boost the classical mismatched capacity of B-DMCs , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[99]  Vladimir B. Balakirsky A converse coding theorem for mismatched decoding at the output of binary-input memoryless channels , 1995, IEEE Trans. Inf. Theory.

[100]  Emmanuel Abbe,et al.  Polar coding schemes for the AWGN channel , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[101]  Aaron D. Wyner,et al.  The Zero Error Capacity of a Noisy Channel , 1993 .

[102]  Kai Chen,et al.  Capacity-achieving rateless polar codes , 2015, 2016 IEEE International Symposium on Information Theory (ISIT).

[103]  Alexander Vardy,et al.  Hardware architectures for successive cancellation decoding of polar codes , 2010, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).