Barium even-to-odd isotope abundance ratios in thick disk and thin disk stars

We present the Ba even-to-odd isotope abundance ratios in 25 cool dwarf stars with the metallicity [Fe/H] ranging between 0.25 and -1.35. Our method takes advantage of the hyperfine structure (HFS) affecting the Ball resonance line of the odd isotopes. The fractional abundance of the odd isotopes of Ba is derived from a requirement that Ba abundances from the resonance line A 4554 and subordinate lines λ15853 and A 6496 must be equal. The results are based on NLTE line formation and analysis of high resolution (R ∼ 60 000) high signal-to-noise (S/N > 200) observed spectra. We find that the fraction of the odd isotopes of Ba grows toward the lower Ba abundance (or metallicity) and the mean value in the thick disk stars equals 33 ± 4%. This indicates the higher contribution of the r-process to barium in the thick disk stars compared to the solar system matter. The obtained fraction increases with the [Eu/Ba] abundance ratio growth in agreement with expectations. A significant fraction of the even isotopes of Ba found in old Galactic stars (the thick disk stars), ∼67%, is in contrast to the prediction of the "classical" model of the s-process and favors the value predicted by the "stellar" models of Arlandini et al. (1999) and Travaglio et al. (1999).

[1]  P. Barklem,et al.  The broadening of Fe II lines by neutral hydrogen collisions , 2005, astro-ph/0502098.

[2]  Potsdam,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[3]  J. Lawler,et al.  The Rise of the s-Process in the Galaxy , 2004, astro-ph/0410396.

[4]  L. A. Kamaeva,et al.  Neutron-capture elements in halo, thick-disk, and thin-disk stars: Neodymium , 2004 .

[5]  L. Mashonkina,et al.  Mg, Ba and Eu abundances in thick disk and halo stars , 2002, astro-ph/0210366.

[6]  J. Truran,et al.  Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.

[7]  A. Mezzacappa,et al.  Nucleosynthesis and Stellar Evolution , 2002 .

[8]  C. Prieto,et al.  The isotopic mixture of barium in the metal‐poor subgiant HD 140283 , 2002, astro-ph/0205376.

[9]  L. Mashonkina,et al.  Heavy element abundances in cool dwarf stars: An implication for the evolution of the Galaxy ? , 2001 .

[10]  V. Kovtyukh,et al.  Analysis of neutron capture elements in metal-poor stars , 2001 .

[11]  J. Prochaska,et al.  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[12]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[13]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[14]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[15]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[16]  F. Ferrini,et al.  Galactic Chemical Evolution of Heavy Elements: From Barium to Europium , 1999, astro-ph/9903451.

[17]  P. Barklem,et al.  The broadening of strong lines of Ca+, Mg+ and Ba+ by collisions with neutral hydrogen atoms , 1998 .

[18]  K. Fuhrmann Nearby stars of the Galactic disk and halo. III. , 1998 .

[19]  A. McWilliam Barium Abundances in Extremely Metal-poor Stars , 1998 .

[20]  C. Simon Jeffery,et al.  Newsletter on Analysis of Astronomical Spectra , 1996 .

[21]  C. Cowley,et al.  Hyperfine structure in the barium resonance line: curves of growth for solar and r-process isotopic mixtures , 1989 .

[22]  Ingemar Furenlid,et al.  Solar flux atlas from 296 to 1300 nm , 1985 .

[23]  C. Cowley,et al.  Moderately accurate oscillator strengths from NBS intensities – II , 1983 .

[24]  G. Werth,et al.  Precise determination of the ground state hyperfine splitting of135Ba+ , 1983 .

[25]  S. Weniger,et al.  Transition probabilities of Cr(I) and Cr(II) lines lying between 422 and 485 nm, using emission measurements from a wall stabilized arc☆ , 1981 .

[26]  Joseph Reader,et al.  Wavelengths and Transition Probabilities for Atoms and Atomic Ions. Part I. Wavelengths. Part II. Transition Probabilities , 1980 .

[27]  R. Rutten,et al.  Empirical NLTE analyses of solar spectral lines , 1978 .

[28]  R. Kurucz,et al.  A table of semiempirical gf values. Part 2. Wavelengths: 272. 3395 nm to 599. 3892 nm , 1975 .

[29]  Blaine A. Bell,et al.  Atomic Line Data , 1995 .

[30]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .

[31]  N. Grevesse,et al.  In: Origin and Evolution of the elements , 1993 .

[32]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .