Characteristic Substructures in Sets of Organic Compounds with Similar Infrared Spectra

A method based on the determination of maximum common substructures is applied for the generation of substructures which are characteristic for a given set of molecular structures. The molecular structures are from hitlists obtained by spectral library searches; the hitlists contain those reference compounds, which have infrared spectra most similar to that from the query compound. The influences of various parameters of this method are investigated with the aim to improve the relevance of the obtained substructures for the structure of the query compound.

[1]  H. Luinge Automated interpretation of vibrational spectra , 1990 .

[2]  J. Clerc Automated Spectra Interpretation and Library Search Systems , 1987 .

[3]  F. McLafferty,et al.  Computer-aided interpretation of mass spectra. 20. Molecular structure comparison program for the identification of maximal common substructures , 1977 .

[4]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[5]  K. Baumann,et al.  Automatic Interpretation of Infrared Spectra , 1997 .

[6]  K. Baumann,et al.  Computer-assisted IR spectra prediction — linked similarity searches for structures and spectra , 1997 .

[7]  Plamen N. Penchev,et al.  IRSS : A PROGRAMME SYSTEM FOR INFRARED LIBRARY SEARCH , 1998 .

[8]  John C. Lindon,et al.  Encyclopedia of spectroscopy and spectrometry , 2000 .

[9]  Kurt Varmuza,et al.  Large and frequently occurring substructures in organic compounds obtained by library search of infrared spectra , 1999 .

[10]  Kurt Varmuza,et al.  Maximum Common Substructures of Organic Compounds Exhibiting Similar Infrared Spectra. , 1998 .

[11]  Charles L. Wilkins,et al.  Optimization of Functional Group Prediction from Infrared Spectra Using Neural Networks , 1996, J. Chem. Inf. Comput. Sci..

[12]  Daniel Cabrol-Bass,et al.  Neural network approach to structural feature recognition from infrared spectra , 1993, J. Chem. Inf. Comput. Sci..

[13]  D. Cabrol-Bass,et al.  New Computer Aided Methods for Revealing Structural Features of Unknown Compounds Using Low Resolution Mass Spectra. , 1998 .

[14]  K. Varmuza,et al.  Common substructures in groups of compounds exhibiting similar mass spectra , 1992 .

[15]  F. Ehrentreich Representation of extended infrared spectrum-structure-correlations based on fuzzy theory , 1997 .

[16]  P. Jurs,et al.  Computer-Enhanced Analytical Spectroscopy , 1988 .

[17]  K. Varmuza Chemical Structure Information from Mass Spectrometry , 1999 .

[18]  T. Visser,et al.  Partial least squares regression as a multivariate tool for the interpretation of infrared spectra , 1995 .

[19]  Barbara J. Debska,et al.  Knowledge Discovery in an Infrared Database , 1997, Comput. Chem..

[20]  William Lingran Chen,et al.  Application of the Maximal Common Substructure Algorithm to Automatic Interpretation of 13C-NMR Spectra , 1994, J. Chem. Inf. Comput. Sci..

[21]  Michael M. Cone,et al.  Molecular structure comparison program for the identification of maximal common substructures , 1977 .

[22]  Plamen N. Penchev,et al.  Description and Performance Analysis of an Infrared Library Search System , 1996 .

[23]  Marjana Novic,et al.  Investigation of Infrared Spectra-Structure Correlation Using Kohonen and Counterpropagation Neural Network , 1995, J. Chem. Inf. Comput. Sci..

[24]  Kurt Varmuza,et al.  Automatic classification of infrared spectra using a set of improved expert-based features , 1999 .

[25]  PeterD. Wentzell Software development in chemistry : Software Development in Chemistry 4. Proceedings of the Workshop “Computers in Chemistry”, Hochfilzen/Tyrol, edited by J. Gasteiger, Springer-Verlag, 1990, DM 98.00, (viii + 419 pages), ISBN: 0-540-52173-9 , 1991 .

[26]  A computer search system for chemical structure elucidation based on low-resolution mass spectra , 1981 .

[27]  Kurt Varmuza,et al.  Substructure Isomorphism Matrix , 2000, J. Chem. Inf. Comput. Sci..

[28]  F. Ehrentreich Joined knowledge- and signal processing for infrared spectrum interpretation , 1999 .

[29]  Morton E. Munk,et al.  The Neural Network as a Tool for Multispectral Interpretation , 1996, J. Chem. Inf. Comput. Sci..