A FINITE ELEMENT SCHEME FOR THE EVOLUTION OF ORIENTATIONAL ORDER IN FLUID MEMBRANES
暂无分享,去创建一个
[1] Epifanio G. Virga,et al. Variational Theories for Liquid Crystals , 2018 .
[2] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[3] Gerhard Dziuk,et al. Computational parametric Willmore flow , 2008, Numerische Mathematik.
[4] Miguel Sebastian Pauletti,et al. Parametric AFEM for geometric evolution equation and coupled fluid -membrane interaction , 2008 .
[5] Harald Garcke,et al. On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..
[6] R. Decca,et al. Dynamics of topological defects in the Lβ′ phase of 1,2-dipalmitoylphosphatidycholine bilayers , 2008 .
[7] François Alouges,et al. A new finite element scheme for Landau-Lifchitz equations , 2008 .
[8] Martin Stynes,et al. Numerical Treatment of Partial Differential Equations , 2007 .
[9] Daniel Coutand,et al. Navier-Stokes Equations Interacting with a Nonlinear Elastic Biofluid Shell , 2007, SIAM J. Math. Anal..
[10] John W. Barrett,et al. A Convergent and Constraint-Preserving Finite Element Method for the p-Harmonic Flow into Spheres , 2007, SIAM J. Numer. Anal..
[11] E. Terentjev,et al. Nematic membranes: shape instabilities of closed achiral vesicles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] Qiang Du,et al. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..
[13] Raluca E. Rusu. An algorithm for the elastic flow of surfaces , 2005 .
[14] Siewert J Marrink,et al. Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. , 2005, Chemistry and physics of lipids.
[15] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[16] Q. Du,et al. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .
[17] Watt W. Webb,et al. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.
[18] Leif Andersson,et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig , 2003, Nature.
[19] N. Uchida. Dynamics of orientational ordering in fluid membranes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] Thierry Biben,et al. An advected-field method for deformable entities under flow , 2002 .
[21] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[22] J. Nagle,et al. Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.
[23] David J. Steigmann,et al. Fluid Films with Curvature Elasticity , 1999 .
[24] F. MacKintosh,et al. Tuning bilayer twist using chiral counterions , 1999, Nature.
[25] S. Müller,et al. Weak compactness of wave maps and harmonic maps , 1998 .
[26] J. Fournier,et al. Sponges, Tubules and Modulated Phases of Para-Antinematic Membranes , 1997 .
[27] F. Alouges. A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .
[28] M. Giaquinta,et al. Calculus of Variations I , 1995 .
[29] Michael Struwe,et al. Geometric evolution problems , 1995 .
[30] Jonathan V Selinger,et al. Theory of chiral lipid tubules. , 1993, Physical review letters.
[31] Lubensky,et al. Theory of "Ripple" Phases of Lipid Bilayers. , 1993, Physical review letters.
[32] Nelson,et al. Rigid chiral membranes. , 1992, Physical review letters.
[33] T. Lubensky,et al. Orientational order, topology, and vesicle shapes. , 1991, Physical review letters.
[34] Yunmei Chen,et al. The weak solutions to the evolution problems of harmonic maps , 1989 .
[35] Prost,et al. Intrinsic bending force in anisotropic membranes made of chiral molecules. , 1988, Physical review. A, General physics.
[36] James T. Jenkins,et al. The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .
[37] E. Evans,et al. Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.
[38] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[39] J. Thorp,et al. Sponges , 1870, The American Naturalist.
[40] Sören Bartels,et al. Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps , 2005, SIAM J. Numer. Anal..
[41] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[42] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[43] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[44] P. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.
[45] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[46] I. Holopainen. Riemannian Geometry , 1927, Nature.