A FINITE ELEMENT SCHEME FOR THE EVOLUTION OF ORIENTATIONAL ORDER IN FLUID MEMBRANES

We investigate the evolution of an almost flat membrane driven by competition of the homogeneous, Frank, and bending energies as well as the coupling of the local order of the constituent molecules of the membrane to its curvature. We propose an alternative to the model in (J.B. Fournier and P. Galatoa, J. Phys. II 7 (1997) 1509-1520; N. Uchida, Phys. Rev. E 66 (2002) 040902) which replaces a Ginzburg-Landau penalization for the length of the order parameter by a rigid constraint. We introduce a fully discrete scheme, consisting of piecewise linear finite elements, show that it is un- conditionally stable for a large range of the elastic moduli in the model, and prove its convergence (up to subsequences) thereby proving the existence of a weak solution to the continuous model. Numer- ical simulations are included that examine typical model situations, confirm our theory, and explore numerical predictions beyond that theory. Mathematics Subject Classification. 35K55, 74K15.

[1]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[2]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[3]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[4]  Miguel Sebastian Pauletti,et al.  Parametric AFEM for geometric evolution equation and coupled fluid -membrane interaction , 2008 .

[5]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[6]  R. Decca,et al.  Dynamics of topological defects in the Lβ′ phase of 1,2-dipalmitoylphosphatidycholine bilayers , 2008 .

[7]  François Alouges,et al.  A new finite element scheme for Landau-Lifchitz equations , 2008 .

[8]  Martin Stynes,et al.  Numerical Treatment of Partial Differential Equations , 2007 .

[9]  Daniel Coutand,et al.  Navier-Stokes Equations Interacting with a Nonlinear Elastic Biofluid Shell , 2007, SIAM J. Math. Anal..

[10]  John W. Barrett,et al.  A Convergent and Constraint-Preserving Finite Element Method for the p-Harmonic Flow into Spheres , 2007, SIAM J. Numer. Anal..

[11]  E. Terentjev,et al.  Nematic membranes: shape instabilities of closed achiral vesicles. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[13]  Raluca E. Rusu An algorithm for the elastic flow of surfaces , 2005 .

[14]  Siewert J Marrink,et al.  Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. , 2005, Chemistry and physics of lipids.

[15]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[16]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[17]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[18]  Leif Andersson,et al.  A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig , 2003, Nature.

[19]  N. Uchida Dynamics of orientational ordering in fluid membranes. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Thierry Biben,et al.  An advected-field method for deformable entities under flow , 2002 .

[21]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[22]  J. Nagle,et al.  Structure of lipid bilayers. , 2000, Biochimica et biophysica acta.

[23]  David J. Steigmann,et al.  Fluid Films with Curvature Elasticity , 1999 .

[24]  F. MacKintosh,et al.  Tuning bilayer twist using chiral counterions , 1999, Nature.

[25]  S. Müller,et al.  Weak compactness of wave maps and harmonic maps , 1998 .

[26]  J. Fournier,et al.  Sponges, Tubules and Modulated Phases of Para-Antinematic Membranes , 1997 .

[27]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[28]  M. Giaquinta,et al.  Calculus of Variations I , 1995 .

[29]  Michael Struwe,et al.  Geometric evolution problems , 1995 .

[30]  Jonathan V Selinger,et al.  Theory of chiral lipid tubules. , 1993, Physical review letters.

[31]  Lubensky,et al.  Theory of "Ripple" Phases of Lipid Bilayers. , 1993, Physical review letters.

[32]  Nelson,et al.  Rigid chiral membranes. , 1992, Physical review letters.

[33]  T. Lubensky,et al.  Orientational order, topology, and vesicle shapes. , 1991, Physical review letters.

[34]  Yunmei Chen,et al.  The weak solutions to the evolution problems of harmonic maps , 1989 .

[35]  Prost,et al.  Intrinsic bending force in anisotropic membranes made of chiral molecules. , 1988, Physical review. A, General physics.

[36]  James T. Jenkins,et al.  The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .

[37]  E. Evans,et al.  Bending resistance and chemically induced moments in membrane bilayers. , 1974, Biophysical journal.

[38]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[39]  J. Thorp,et al.  Sponges , 1870, The American Naturalist.

[40]  Sören Bartels,et al.  Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps , 2005, SIAM J. Numer. Anal..

[41]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[42]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[43]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[44]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[45]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[46]  I. Holopainen Riemannian Geometry , 1927, Nature.