Nanocrystalline electronic junctions

[1]  A. Hagfeldt,et al.  Hetero-Supramolecular Modification of Nanocrystalline TiO₂-Film Electrodes: Photoassisted Electrocatalysis at B₁₂-on-TiO₂ , 1996, CHIMIA.

[2]  K. Tennakone,et al.  A dye-sensitized nano-porous solid-state photovoltaic cell , 1995 .

[3]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .

[4]  M. Grätzel,et al.  Fast Electrochromic Switching with Nanocrystalline Oxide Semiconductor Films , 1994 .

[5]  Greg P. Smestad,et al.  Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies , 1994 .

[6]  S. Hotchandani,et al.  Photoelectrochemistry of Quantized WO3 Colloids: Electron Storage, Electrochromic, and Photoelectrochromic Effects , 1993 .

[7]  Michael Grätzel,et al.  Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region , 1993 .

[8]  Donald Fitzmaurice,et al.  Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films , 1993 .

[9]  Valery Shklover,et al.  Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride , 1993 .

[10]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[11]  Donald Fitzmaurice,et al.  Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents , 1993 .

[12]  Gary Hodes,et al.  Nanocrystalline photoelectrochemical cells : a new concept in photovoltaic cells , 1992 .

[13]  A. Hagfeldt,et al.  Photoelectrochemical studies of colloidal TiO2-films : the charge separation process studied by means of action spectra in the UV region , 1992 .

[14]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[15]  F. Willig,et al.  Influence of trap filling on photocurrent transients in polycrystalline TiO2 , 1991 .

[16]  Marc A. Anderson,et al.  Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation , 1990 .

[17]  Mohammad Khaja Nazeeruddin,et al.  Conversion of Light into Electricity with Trinuclear Ruthenium Complexes Adsorbed on Textured TiO2 Films , 1990 .

[18]  Franco Scandola,et al.  Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22- , 1990 .

[19]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[20]  J. Moser,et al.  Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania , 1985 .

[21]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[22]  S. Zakeeruddin,et al.  Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. [Erratum to document cited in CA122:165412] , 1995 .

[23]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[24]  R. Könenkamp,et al.  Recombination in nanophase TiO2 films , 1994 .