Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling

[1]  Lin Pei,et al.  Prognostic significance of cytogenetic abnormalities in T‐cell prolymphocytic leukemia , 2017, American journal of hematology.

[2]  N. Gray,et al.  THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors , 2017, Nature Communications.

[3]  Scott E. Martin,et al.  Reproducible pharmacogenomic profiling of cancer cell line panels , 2016, Nature.

[4]  R. Advani,et al.  The World Health Organization Classification of Lymphoid Neoplasms , 2013 .

[5]  A. Strasser,et al.  Preview : Published ahead of advance online publication Re-activation of mitochondrial apoptosis inhibits T cell lymphoma survival and treatment resistance , 2016 .

[6]  R. Siebert,et al.  Genes encoding members of the JAK‐STAT pathway or epigenetic regulators are recurrently mutated in T‐cell prolymphocytic leukaemia , 2016, British journal of haematology.

[7]  T. Haferlach,et al.  Genetic characterization of T‐PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker , 2016, Genes, chromosomes & cancer.

[8]  Ching‐Yu Huang,et al.  Dual-Specificity Phosphatase 4 Regulates STAT5 Protein Stability and Helper T Cell Polarization* , 2015, PloS one.

[9]  A. Stuart,et al.  Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia , 2015, Science Translational Medicine.

[10]  L. Rimsza,et al.  Synergistic Induction of Apoptosis in High-Risk DLBCL by BCL2 Inhibition with ABT-199 Combined With Pharmacologic Loss of MCL1 , 2015, Leukemia.

[11]  Krister Wennerberg,et al.  Axitinib effectively inhibits BCR-ABL1(T315I) with a distinct binding conformation , 2015, Nature.

[12]  M. Herling Are we improving the outcome for patients with T‐cell prolymphocytic leukemia by allogeneic stem cell transplantation? , 2015, European journal of haematology.

[13]  Can Alkan,et al.  Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells , 2015, Nature Communications.

[14]  K. Elenitoba-Johnson,et al.  Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia. , 2014, Blood.

[15]  Darjus F. Tschaharganeh,et al.  CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma , 2014, Genes & development.

[16]  R. Siebert,et al.  Recurrent mutation of JAK3 in T‐cell prolymphocytic leukemia , 2014, Genes, chromosomes & cancer.

[17]  M. Stern,et al.  Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia , 2014, Leukemia.

[18]  Jiangwen Zhang,et al.  β-Catenin induces T-cell transformation by promoting genomic instability , 2013, Proceedings of the National Academy of Sciences.

[19]  Benjamin Haibe-Kains,et al.  Inconsistency in large pharmacogenomic studies , 2013, Nature.

[20]  G. Crispatzu,et al.  Models for mature T-cell lymphomas--a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts. , 2013, Critical reviews in oncology/hematology.

[21]  Krister Wennerberg,et al.  Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. , 2013, Cancer discovery.

[22]  Edwin Wang,et al.  Signaling network assessment of mutations and copy number variations predict breast cancer subtype-specific drug targets. , 2013, Cell reports.

[23]  G. Crispatzu,et al.  T-Cell Receptor Signaling in Peripheral T-Cell Lymphoma – A Review of Patterns of Alterations in a Central Growth Regulatory Pathway , 2013, Current Hematologic Malignancy Reports.

[24]  H. Döhner,et al.  Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T‐cell prolymphocytic leukemia , 2013, Cancer.

[25]  M. Hansmann,et al.  Mature T-cell lymphomagenesis induced by retroviral insertional activation of Janus kinase 1. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[26]  C. Dearden How I treat prolymphocytic leukemia. , 2012, Blood.

[27]  S. Mustjoki,et al.  Somatic STAT3 mutations in large granular lymphocytic leukemia. , 2012, The New England journal of medicine.

[28]  W. Wiktor-Jedrzejczak,et al.  Hematopoietic stem cell transplantation in T-prolymphocytic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation and the Royal Marsden Consortium , 2012, Leukemia.

[29]  T. Tan,et al.  DUSP4 deficiency enhances CD25 expression and CD4+ T‐cell proliferation without impeding T‐cell development , 2012, European journal of immunology.

[30]  Y. Pekarsky,et al.  Tcl1 interacts with Atm and enhances NF-κB activation in hematologic malignancies. , 2012, Blood.

[31]  N. Rao,et al.  A Comprehensive Update on Molecular and Cytogenetic Abnormalities in T-cell Prolymphocytic Leukemia (T-pll). , 2012, Journal of the Association of Genetic Technologists.

[32]  Julio Saez-Rodriguez,et al.  Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks , 2012, BMC Systems Biology.

[33]  H. Nakahashi,et al.  TCL1A gene involvement in T-cell prolymphocytic leukemia in Japanese patients , 2011, International Journal of Hematology.

[34]  A. Børresen-Dale,et al.  Identification of fusion genes in breast cancer by paired-end RNA-sequencing , 2011, Genome Biology.

[35]  W. Plunkett,et al.  Phase I and pharmacologic study of SNS-032, a potent and selective Cdk2, 7, and 9 inhibitor, in patients with advanced chronic lymphocytic leukemia and multiple myeloma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  D. Catovsky,et al.  Stem cell transplantation after alemtuzumab in T‐cell prolymphocytic leukaemia results in longer survival than after alemtuzumab alone: a multicentre retrospective study , 2010, British journal of haematology.

[37]  M. Hallek,et al.  High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. , 2009, Blood.

[38]  W. Plunkett,et al.  Mechanism of action of SNS-032, a novel cyclin-dependent kinase inhibitor, in chronic lymphocytic leukemia. , 2009, Blood.

[39]  A. Vincent-Salomon,et al.  Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia. , 2008, Blood.

[40]  M. Teitell,et al.  High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. , 2008, Blood.

[41]  Patricia M. LoRusso,et al.  Phase I Studies , 2022 .

[42]  R. Siebert,et al.  Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32) , 2007, Leukemia.

[43]  M. Keating,et al.  A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. , 2004, Blood.

[44]  N. Gueven,et al.  Transcriptional downregulation of ATM by EGF is defective in ataxia-telangiectasia cells expressing mutant protein , 2001, Oncogene.

[45]  D. Catovsky,et al.  p53 allele deletion and protein accumulation occurs in the absence of p53 gene mutation in T‐prolymphocytic leukaemia and Sezary syndrome , 2000, British journal of haematology.

[46]  F. Sigaux,et al.  Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia. , 1998, Blood.

[47]  G. Russo,et al.  Deregulated expression of TCL1 causes T cell leukemia in mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Catovsky,et al.  Expression of c-myc oncoprotein in chronic T cell leukemias. , 1995, Leukemia.

[49]  F. Sigaux,et al.  MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. , 1993, Oncogene.

[50]  Can Alkan,et al.  Activating mutations of STAT5B and STAT3 in lymphomas derived from gamma delta-T or NK cells , 2022 .