Surface photovoltage characterization of an oriented α-Fe2O3 nanorod array

[1]  L. Wan,et al.  Morphology control of Fe2O3 nanocrystals and their application in catalysis , 2007 .

[2]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[3]  X. Jiao,et al.  Facile fabrication of long α-Fe 2O 3, α-Fe and γ-Fe 2O 3 hollow fibers using sol–gel combined co-electrospinning technology , 2007 .

[4]  Y. Chu,et al.  Synthesis and characterization of ring-like α-Fe2O3 , 2007 .

[5]  Yiying Wu,et al.  Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays. , 2006, Journal of the American Chemical Society.

[6]  Xiao Wei Sun,et al.  Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications , 2006 .

[7]  Daqin Chen,et al.  pH value-dependant growth of α-Fe2O3 hierarchical nanostructures , 2006 .

[8]  Jih-Jen Wu,et al.  Growth and Magnetic Properties of Oriented α-Fe2O3 Nanorods , 2006 .

[9]  Yi Xie,et al.  Synthesis of hematite (alpha-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. , 2006, The journal of physical chemistry. B.

[10]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[11]  Yuqiu Wang,et al.  Surfactant-assisted synthesis of alpha-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. , 2006, The journal of physical chemistry. B.

[12]  Ying-Jie Zhu,et al.  Controlled Growth of Aligned Arrays of Cu−Ferrite Nanorods , 2006 .

[13]  T. Ivanov,et al.  Surface photovoltage phase spectroscopy – a handy tool for characterisation of bulk semiconductors and nanostructures , 2006 .

[14]  K. Cheng,et al.  Quantum size effect on surface photovoltage spectra: alpha-Fe(2)O(3) nanocrystals on the surface of monodispersed silica microsphere. , 2006, The journal of physical chemistry. B.

[15]  Yanfa Yan,et al.  Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO ( 10 1 ¯ 0 ) surface , 2005 .

[16]  Jinghua Guo,et al.  One‐Dimensional Quantum‐Confinement Effect in α‐Fe2O3 Ultrafine Nanorod Arrays , 2005 .

[17]  Zhong Lin Wang,et al.  Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. , 2005, The journal of physical chemistry. B.

[18]  Udo Weimar,et al.  An n- to p-type conductivity transition induced by oxygen adsorption on α-Fe2O3 , 2004 .

[19]  M. Graetzel,et al.  Highly ordered SnO2 nanorod arrays from controlled aqueous growth. , 2004, Angewandte Chemie.

[20]  H. Zhang,et al.  Synthesis of large arrays of aligned α-Fe2O3 nanowires , 2003 .

[21]  A. Weidenkaff,et al.  Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes , 2003 .

[22]  A. Hagfeldt,et al.  Aqueous photoelectrochemistry of hematite nanorod array , 2002 .

[23]  Anders Hagfeldt,et al.  Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides , 2001 .

[24]  A. Hagfeldt,et al.  Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite , 2000 .

[25]  L. Kronik,et al.  Surface photovoltage phenomena: theory, experiment, and applications , 1999 .

[26]  M. D. Gurol,et al.  Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications , 1998 .

[27]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[28]  R. Shrivastav,et al.  Nanostructured hematite for photoelectrochemical generation of hydrogen , 2008 .