Archaeal Origins of Eukaryotic Cell and Nucleus

Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.

[1]  G. Levit,et al.  Ernst Haeckel in the history of biology , 2019, Current Biology.

[2]  S. Svärd,et al.  An up-date on Giardia and giardiasis. , 2016, Current opinion in microbiology.

[3]  A. Poole,et al.  A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree , 2018, Front. Microbiol..

[4]  K. Inaba Sperm flagella: comparative and phylogenetic perspectives of protein components. , 2011, Molecular human reproduction.

[5]  K. Verhey,et al.  Molecular connections between nuclear and ciliary import processes , 2013, Cilia.

[6]  Jenna L Wingfield,et al.  Chlamydomonas Basal Bodies as Flagella Organizing Centers , 2018, Cells.

[7]  Jihye Jung,et al.  Archaea, tiny helpers of land plants , 2020, Computational and structural biotechnology journal.

[8]  F. Taylor,et al.  II. IMPLICATIONS AND EXTENSIONS OF THE SERIAL ENDOSYMBIOSIS THEORY OF THE ORIGIN OF EUKARYOTES , 1974 .

[9]  B. Oliver,et al.  Sperm Head-Tail Linkage Requires Restriction of Pericentriolar Material to the Proximal Centriole End. , 2020, Developmental cell.

[10]  K. Dan,et al.  The Isolation and Biochemical Characterization of the Mitotic Apparatus of Dividing Cells. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Hooi Lynn Kee,et al.  A Size-Exclusion Permeability Barrier and Nucleoporins Characterize a Ciliary Pore Complex that Regulates Transport into Cilia , 2012, Nature Cell Biology.

[12]  R. Miller,et al.  Studies of the rhizoplast from Naegleria gruberi. , 1981, Journal of cell science.

[13]  C. Lusk,et al.  Nucleoporin NUP205 plays a critical role in cilia and congenital disease. , 2020, Developmental biology.

[14]  C. Aylett,et al.  The Tubulin Superfamily in Archaea. , 2017, Sub-cellular biochemistry.

[15]  N. Salamin,et al.  Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes , 2019, Current Biology.

[16]  M. Melkonian,et al.  Striated flagellar roots: isolation and partial characterization of a calcium-modulated contractile organelle , 1984, The Journal of cell biology.

[17]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[18]  T. Avidor-Reiss,et al.  The sperm centrioles , 2020, Molecular and Cellular Endocrinology.

[19]  E. Koonin The origin and early evolution of eukaryotes in the light of phylogenomics , 2010, Genome Biology.

[20]  R. Schmitz,et al.  Archaea Are Interactive Components of Complex Microbiomes. , 2018, Trends in microbiology.

[21]  G. Schatten,et al.  A novel atypical sperm centriole is functional during human fertilization , 2018, Nature Communications.

[22]  Thijs J. G. Ettema,et al.  An archaeal origin for the actin cytoskeleton: Implications for eukaryogenesis , 2011, Communicative & integrative biology.

[23]  E. Moseman Battling brain-eating amoeba: Enigmas surrounding immunity to Naegleria fowleri , 2020, PLoS Pathogens.

[24]  L. Blanchoin,et al.  Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea , 2020, Proceedings of the National Academy of Sciences.

[25]  M. Brueckner,et al.  NUP98 Sets the Size-Exclusion Diffusion Limit through the Ciliary Base , 2018, Current Biology.

[26]  Ricardo Guerrero,et al.  The last eukaryotic common ancestor (LECA): Acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon , 2006, Proceedings of the National Academy of Sciences.

[27]  D. Fawcett The mammalian spermatozoon. , 1975, Developmental biology.

[28]  M. Alvarado-Kristensson Choreography of the centrosome , 2020, Heliyon.

[29]  J. Salisbury,et al.  Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii , 1987, The Journal of cell biology.

[30]  A. Khodjakov,et al.  Requirement of a Centrosomal Activity for Cell Cycle Progression Through G1 into S Phase , 2001, Science.

[31]  Jan Sapp,et al.  Saltational symbiosis , 2010, Theory in Biosciences.

[32]  J. Salisbury Centrin, centrosomes, and mitotic spindle poles. , 1995, Current opinion in cell biology.

[33]  E. Koonin,et al.  Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea , 2020, mBio.

[34]  R. Gräf Comparative Biology of Centrosomal Structures in Eukaryotes , 2018, Cells.

[35]  R. Gordon,et al.  Symbiosis: Why Was the Transition from Microbial Prokaryotes to Eukaryotic Organisms a Cosmic Gigayear Event? , 2018 .

[36]  N. Butterfield Early evolution of the Eukaryota , 2015 .

[37]  Thijs J. G. Ettema,et al.  Asgard archaea illuminate the origin of eukaryotic cellular complexity , 2017, Nature.

[38]  V. Klink,et al.  Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. , 2001, Molecular biology of the cell.

[39]  G. Jensen,et al.  The Structure, Function and Roles of the Archaeal ESCRT Apparatus. , 2017, Sub-cellular biochemistry.

[40]  G. Fox,et al.  The Singular Quest for a Universal Tree of Life , 2013, Microbiology and Molecular Reviews.

[41]  J. Lake Origin of the eukaryotic nucleus: eukaryotes and eocytes are genotypically related. , 1989, Canadian journal of microbiology.

[42]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[43]  D. Moreira,et al.  Cultured Asgard Archaea Shed Light on Eukaryogenesis , 2020, Cell.

[44]  T. Avidor-Reiss,et al.  The Role of Sperm Centrioles in Human Reproduction – The Known and the Unknown , 2019, Front. Cell Dev. Biol..

[45]  Amy K. Schmid,et al.  The Ribbon-Helix-Helix Domain Protein CdrS Regulates the Tubulin Homolog ftsZ2 To Control Cell Division in Archaea , 2020, mBio.

[46]  G. Brugerolle,et al.  The rhizoplast of chrysomonads, a basal body–nucleus connector that polarises the dividing spindle , 2003, Protoplasma.

[47]  E. Koonin The Incredible Expanding Ancestor of Eukaryotes , 2010, Cell.

[48]  L. Margulis,et al.  Semes for analysis of evolution: de Duve's peroxisomes and Meyer's hydrogenases in the sulphurous Proterozoic eon , 2007, Nature Reviews Genetics.

[49]  F. Baluška,et al.  Strasburger’s legacy to mitosis and cytokinesis and its relevance for the Cell Theory , 2012, Protoplasma.

[50]  C. Zimmer Origins. On the origin of eukaryotes. , 2009, Science.

[51]  J. Archibald,et al.  Endosymbiosis and Eukaryotic Cell Evolution , 2015, Current Biology.

[52]  K. Stewart,et al.  Structural evolution in the flagellated cells of green algae and land plants. , 1978, Bio Systems.

[53]  J A Lake,et al.  Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. , 1992, Science.

[54]  Filipa L. Sousa,et al.  Meet the relatives of our cellular ancestor , 2020, Nature.

[55]  Lynn Margulis,et al.  Motility proteins and the origin of the nucleus , 2002, The Anatomical record.

[56]  G. B. Golding,et al.  The origin of the eukaryotic cell. , 1996, Trends in biochemical sciences.

[57]  Y. Y. Levy,et al.  Centrin is synthesized and assembled into basal bodies during Naegleria differentiation. , 1998, Cell motility and the cytoskeleton.

[58]  M. Salcher,et al.  Visualization of Lokiarchaeia and Heimdallarchaeia (Asgardarchaeota) by Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition (CARD-FISH) , 2020, mSphere.

[59]  S. Bengtson,et al.  Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae , 2017, PLoS biology.

[60]  H. Schatten,et al.  The Sperm Centrosome: Its Role and Significance in Nature and Human Assisted Reproduction: , 2011 .

[61]  U. Kutschera From the scala naturae to the symbiogenetic and dynamic tree of life , 2011, Biology Direct.

[62]  F. Baluška,et al.  Energide-cell body as smallest unit of eukaryotic life. , 2018, Annals of botany.

[63]  M. Rout,et al.  Ciliary and nuclear transport: different places, similar routes? , 2012, Developmental cell.

[64]  Thijs J. G. Ettema,et al.  Complex archaea that bridge the gap between prokaryotes and eukaryotes , 2015, Nature.

[65]  J. Lake,et al.  Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Grossman,et al.  From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature , 2018, eLife.

[67]  Scott F. Gilbert,et al.  A Symbiotic View of Life: We Have Never Been Individuals , 2012, The Quarterly Review of Biology.

[68]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[69]  Thijs J. G. Ettema,et al.  The Archaeal Roots of the Eukaryotic Dynamic Actin Cytoskeleton , 2020, Current Biology.

[70]  Tiago J Dantas,et al.  Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance , 2012, Cellular and Molecular Life Sciences.

[71]  S. Singer,et al.  The microtubule-organizing complex and the Golgi apparatus are co-localized around the entire nuclear envelope of interphase cardiac myocytes. , 1987, Journal of cell science.

[72]  D. Moreira,et al.  Symbiosis in eukaryotic evolution. , 2017, Journal of theoretical biology.

[73]  Lei Lu,et al.  Mechanisms of ciliary targeting: entering importins and Rabs , 2017, Cellular and Molecular Life Sciences.

[74]  Hyman Hartman,et al.  The origin of the eukaryotic cell: A genomic investigation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  E. Koonin Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[76]  H. Horz Archaeal Lineages within the Human Microbiome: Absent, Rare or Elusive? , 2015, Life.

[77]  M. Bornens,et al.  Origin and evolution of the centrosome. , 2007, Advances in experimental medicine and biology.

[78]  F. Baluška,et al.  Cell-Cell Channels and Their Implications for Cell Theory , 2006 .

[79]  František Baluška,et al.  Cell bodies in a cage , 2004, Nature.

[80]  M. Bettencourt-Dias,et al.  Centrosome Remodelling in Evolution , 2018, Cells.

[81]  F. Baluška,et al.  Eukaryotic cells and their cell bodies: Cell Theory revised. , 2004, Annals of botany.

[82]  L. Amos,et al.  Overview of the Diverse Roles of Bacterial and Archaeal Cytoskeletons. , 2017, Sub-cellular biochemistry.

[83]  Lillian K. Fritz-Laylin,et al.  The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. , 2011, Research in microbiology.

[84]  L Margulis,et al.  The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Petros Batsios,et al.  Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. , 2015, European journal of cell biology.

[86]  R. Schmitz,et al.  The host-associated archaeome , 2020, Nature Reviews Microbiology.

[87]  U. Kutschera,et al.  Haeckel's 1866 tree of life and the origin of eukaryotes , 2016, Nature Microbiology.

[88]  R. Robinson,et al.  Genomes of Asgard archaea encode profilins that regulate actin , 2018, Nature.

[89]  Y. Y. Levy,et al.  Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. , 1996, Cell motility and the cytoskeleton.

[90]  P W Barlow,et al.  Nuclear components with microtubule-organizing properties in multicellular eukaryotes: functional and evolutionary considerations. , 1997, International review of cytology.

[91]  Thijs J. G. Ettema,et al.  Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks. , 2016, Molecular biology and evolution.

[92]  From the Inside Out: an Epibiotic Bdellovibrio Predator with an Expanded Genomic Complement , 2020, Journal of bacteriology.

[93]  J. Salisbury A mechanistic view on the evolutionary origin for centrin‐based control of centriole duplication , 2007, Journal of cellular physiology.

[94]  M. C. Alliegro,et al.  The Karyomastigont as an Evolutionary Seme , 2012, The Quarterly Review of Biology.

[95]  M. Melkonian Ultrastructural aspects of basal body associated fibrous structures in green algae: a critical review. , 1980, Bio Systems.

[96]  F. Baluška,et al.  Symbiotic Origin of Eukaryotic Nucleus: From Cell Body to Neo-Energide , 2018 .

[97]  J. Azimzadeh,et al.  Exploring the evolutionary history of centrosomes , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[98]  K. Wilson,et al.  Functional evolution of nuclear structure , 2011, The Journal of cell biology.

[99]  J. Salisbury,et al.  The centrin-based cytoskeleton of Chlamydomonas reinhardtii: distribution in interphase and mitotic cells , 1988, The Journal of cell biology.

[100]  J. Jarvik,et al.  A nucleus-basal body connector in Chlamydomonas reinhardtii that may function in basal body localization or segregation , 1985, The Journal of cell biology.

[101]  A. D. Dingle,et al.  Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi , 1981, The Journal of cell biology.

[102]  D. Mazia The chromosome cycle and the centrosome cycle in the mitotic cycle. , 1987, International review of cytology.

[103]  E. Jurkevitch,et al.  Predation between prokaryotes and the origin of eukaryotes , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[104]  D. Baum A comparison of autogenous theories for the origin of eukaryotic cells. , 2015, American journal of botany.

[105]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[106]  D. Garbary,et al.  Motile Gametes of Land Plants: Diversity, Development, and Evolution , 2001 .

[107]  D. Forbes,et al.  Centrin 2 Localizes to the Vertebrate Nuclear Pore and Plays a Role in mRNA and Protein Export , 2008, Molecular and Cellular Biology.

[108]  P. Raven A Multiple Origin for Plastids and Mitochondria , 1970, Science.

[109]  W. Marshall,et al.  The Mother Centriole Plays an Instructive Role in Defining Cell Geometry , 2007, PLoS biology.

[110]  S. Kanaya,et al.  Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis , 2001, Nature Cell Biology.

[111]  D. Moreira,et al.  The Syntrophy hypothesis for the origin of eukaryotes revisited , 2020, Nature Microbiology.

[112]  S. Dawson,et al.  Microtubule organelles in Giardia. , 2020, Advances in parasitology.

[113]  T. Gabaldón Relative timing of mitochondrial endosymbiosis and the “pre‐mitochondrial symbioses” hypothesis , 2018, IUBMB life.

[114]  R. Siddiqui,et al.  Biology and pathogenesis of Naegleria fowleri. , 2016, Acta tropica.

[115]  Marina Leone,et al.  Microtubule Organization in Striated Muscle Cells , 2020, Cells.

[116]  R. Robinson,et al.  Mythical origins of the actin cytoskeleton. , 2020, Current opinion in cell biology.

[117]  Isolation of an archaeon at the prokaryote–eukaryote interface , 2020, Nature.

[118]  M. Gray Lynn Margulis and the endosymbiont hypothesis: 50 years later , 2017, Molecular biology of the cell.

[119]  S. Dawson,et al.  Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia , 2016, Cilia.

[120]  Uwe Hoßfeld,et al.  Ernst Haeckel (1834–1919): The German Darwin and his impact on modern biology , 2019, Theory in Biosciences.

[121]  Betsey Dexter Dyer,et al.  The origin of eukaryotic cells , 1985 .

[122]  S. Porter Insights into eukaryogenesis from the fossil record , 2020, Interface Focus.

[123]  Lennart Olsson,et al.  The “Biogenetic Law” in zoology: from Ernst Haeckel’s formulation to current approaches , 2017, Theory in Biosciences.

[124]  R. Bernander,et al.  Cell division and the ESCRT complex , 2009, Communicative & integrative biology.

[125]  F. Taylor Autogenous theories for the origin of eukaryotes , 1976 .