A Unifying Parametric Framework for 2D Steerable Wavelet Transforms

We introduce a complete parameterization of the family of two-dimensional steerable wavelets that are polar-separable in the Fourier domain under the constraint of self-reversibility. These wavelets are constructed by multiorder generalized Riesz transformation of a primary isotropic bandpass pyramid. The backbone of the transform (pyramid) is characterized by a radial frequency profile function $h(\omega)$, while the directional wavelet components at each scale are encoded by an $M \times (2N+1)$ shaping matrix ${\bf U}$, where $M$ is the number of wavelet channels and $N$ the order of the Riesz transform. We provide general conditions on $h(\omega)$ and ${\bf U}$ for the underlying wavelet system to form a tight frame of $L_2(\mathbb{R}^2)$ (with a redundancy factor $4/3M$). The proposed framework ensures that the wavelets are steerable and provides new degrees of freedom (shaping matrix ${\bf U}$) that can be exploited for designing specific wavelet systems. It encompasses many known transforms as part...

[1]  Michael Unser,et al.  Left-inverses of fractional Laplacian and sparse stochastic processes , 2010, Adv. Comput. Math..

[2]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[3]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[5]  Michael Unser,et al.  Decay Properties of Riesz Transforms and Steerable Wavelets , 2013, SIAM J. Imaging Sci..

[6]  D. Donoho,et al.  A RATIONAL DESIGN OF A DIGITAL SHEARLET TRANSFORM , 2010 .

[7]  Dimitri Van De Ville,et al.  Complex Wavelet Bases, Steerability, and the Marr-Like Pyramid , 2008, IEEE Transactions on Image Processing.

[8]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[9]  Isabelle Bloch,et al.  Morphological source separation for particle tracking in complex biological environments , 2008, 2008 19th International Conference on Pattern Recognition.

[10]  Minh N. Do,et al.  The Nonsubsampled Contourlet Transform: Theory, Design, and Applications , 2006, IEEE Transactions on Image Processing.

[11]  Hossein Rabbani,et al.  Image denoising in steerable pyramid domain based on a local Laplace prior , 2009, Pattern Recognit..

[12]  Dimitri Van De Ville,et al.  Wavelet Steerability and the Higher-Order Riesz Transform , 2010, IEEE Transactions on Image Processing.

[13]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[14]  K. Gousset,et al.  Prions hijack tunneling nanotubes for intercellular spread , 2008 .

[15]  Brigitte Forster-Heinlein,et al.  Steerable Wavelet Frames Based on the Riesz Transform , 2010, IEEE Transactions on Image Processing.

[16]  Eero P. Simoncelli,et al.  Steerable wedge filters for local orientation analysis , 1996, IEEE Trans. Image Process..

[17]  Dimitri Van De Ville,et al.  Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform , 2009, IEEE Transactions on Image Processing.

[18]  Baltasar Beferull-Lozano,et al.  Rotation-invariant texture retrieval with gaussianized steerable pyramids , 2005, IEEE Transactions on Image Processing.

[19]  Giovanni Jacovitti,et al.  Multiresolution circular harmonic decomposition , 2000, IEEE Trans. Signal Process..

[20]  Yueting Zhuang,et al.  Steerable pyramid-based face hallucination , 2005, Pattern Recognit..

[21]  J. Goodman Introduction to Fourier optics , 1969 .

[22]  Nicolas Chenouard,et al.  Steerable Pyramids and Tight Wavelet Frames in , 2011 .

[23]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[24]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[25]  M. A. Oldfield,et al.  Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[27]  J. Stewart Positive definite functions and generalizations, an historical survey , 1976 .

[28]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[29]  Emmanuel Papadakis,et al.  The geometry and the analytic properties of isotropic multiresolution analysis , 2009, Adv. Comput. Math..

[30]  Ioannis A. Kakadiaris,et al.  Nonseparable Radial Frame Multiresolution Analysis in Multidimensions , 2003 .

[31]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[32]  Jianping Ding,et al.  Radial Hilbert transform with Laguerre-Gaussian spatial filters. , 2006, Optics letters.

[33]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[34]  K. Larkin Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[36]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[37]  Atilla Baskurt,et al.  Multidirectional curvilinear structures detection using steerable pyramid , 2004, J. Electronic Imaging.

[38]  Baltasar Beferull-Lozano,et al.  Directionlets: anisotropic multidirectional representation with separable filtering , 2006, IEEE Transactions on Image Processing.

[39]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[40]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[41]  Zheng Liu,et al.  Image fusion by using steerable pyramid , 2001, Pattern Recognit. Lett..

[42]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[43]  Nicolas Chenouard,et al.  Prions hijack tunnelling nanotubes for intercellular spread , 2009, Nature Cell Biology.

[44]  M. Unser Local linear transforms for texture measurements , 1986 .

[45]  Wang-Q Lim,et al.  Image Separation Using Wavelets and Shearlets , 2010, Curves and Surfaces.

[46]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[47]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[49]  William T. Freeman,et al.  Presented at: 2nd Annual IEEE International Conference on Image , 1995 .

[50]  Dimitri Van De Ville,et al.  Steerable pyramids and tight wavelet frames in L 2 ( R d ) , 2011 .

[51]  D. Slepian Some comments on Fourier analysis, uncertainty and modeling , 1983 .