Assessment of data and criteria for cladding burst in loss-of-coolant accidents

Vi soker i rapporten systematisera data avseende zirkoniumbaserade branslekapslingsrors brottbeteende under haverifall med kylmedelsforlust (LOCA), som rapporterats fran ex- perimentella studier sedan slutet av 1970-talet. Vart mal ar att faststalla anvandbara data och utvardera dessa gentemot de brottkriterier som ar tillgangliga i QT/SSM:s version av berakningsprogrammet FRAPTRAN. Detta program beraknar transientbeteendet hos karn- branslestavar i lattvattenreaktorer under reaktortransienter och hypotetiska olyckor, sasom LOCA. Databasen omfattar kapslingsmaterialen Zircaloy-4, ZIRLO och legeringar med sammansattningen Zr-1wt%Nb. Rapporten sammanfattar databasen, berakningsmetodiken och uttrycken for de olika brottkriterierna, samt presenterar resultaten av var utvardering genom att jamfora berakningsresultat med matdata i diagram over tid till kapslingsbrott, brottemperatur, och kapslingens brottspanning och brottojning. Dessutom ges en kort over- sikt av osakerheterna i berakningarna. Vi har funnit att Rosingers spanningsbaserade brottkriterium, vilket ursprungligen utvecklades for “best-estimate”-prediktering av kapslings- brott i Zircaloy-4, ar tillampbart for saval Zircaloy-4 som ZIRLO-kapsling, om en basta skattning av kapslingsbrott erfordras. Vad galler ZIRLO-kapsling, kan namnda brottkriterium forbattras ytterligare, under forutsattning att en tillracklig mangd matdata avseende brott- och materialegenskaper ar tillganglig.

[1]  Kenji Yoshida,et al.  Failure Correlation for Zircaloy-2 Fuel Cladding under High Temperature Transient Conditions , 1987 .

[2]  Zoltán Hózer,et al.  Ballooning Experiments with VVER Cladding , 2005 .

[3]  A. Massih High-temperature creep and superplasticity in zirconium alloys , 2013 .

[4]  A. Massih,et al.  Transformation kinetics of alloys under non-isothermal conditions , 2009, 0905.2276.

[5]  A. Massih An evaluation of high-temperature creep of zirconium alloys : data versus models , 2014 .

[6]  John Paul Foster,et al.  ZIRLO TM Cladding Improvement , 2008 .

[7]  Hee M. Chung FUEL BEHAVIOR UNDER LOSS-OF-COOLANT ACCIDENT SITUATIONS , 2005 .

[8]  Fj Erbacher,et al.  Zircaloy Fuel Cladding Behavior in a Loss-of-Coolant Accident: A Review , 1987 .

[9]  A. Motta,et al.  Zirconium Alloys in Nuclear Applications , 2006 .

[10]  J. Schemel,et al.  Effect of Beta Quenching on the Microstructure and Corrosion of Zircaloys , 1987 .

[11]  Tero Manngård,et al.  Evaluation of the Halden IFA-650 loss-of-coolant accident experiments 2, 3 and 4 , 2014 .

[12]  F. J. Erbacher,et al.  Cladding deformation and emergency core cooling of a pressurized water reactor in a LOCA. Summary description of the REBEKA program , 1990 .

[13]  J. C. Brachet,et al.  Experimental determination of creep properties of Zirconium alloys together with phase transformation , 2004 .

[14]  F. J. Erbacher,et al.  Experiments on ballooning in pressurized and transiently heated zircaloy-4 tubes , 1988 .

[15]  S. H. Jury,et al.  Zirconium metal-water oxidation kinetics. IV. Reaction rate studies. [BWR:PWR] , 1977 .

[16]  J. van de Laar,et al.  Extending the application range of a fuel performance code from normal operating to design basis accident conditions , 2007 .

[17]  M. Mayuzumi,et al.  Creep deformation and rupture properties of unirradiated Zircaloy-4 nuclear fuel cladding tube at temperatures of 727 to 857 K , 1990 .

[18]  T. F. Kassner,et al.  Pseudobinary zircaloy-oxygen phase diagram , 1979 .

[19]  William F. Lyon,et al.  Capabilities of the FALCON Steady State and Transient Fuel Performance Code , 2004 .

[20]  A. Massih Transformation kinetics of zirconium alloys under non-isothermal conditions , 2009 .

[21]  G. Schanz,et al.  Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions , 1987 .

[22]  M. Pathak,et al.  Burst criterion for zircaloy-4 fuel cladding in an inert environment , 2013 .

[23]  C. Bernaudat,et al.  Experiment and Modeling of Advanced Fuel Rod Cladding Behavior Under LOCA Conditions: Alpha-Beta Phase Transformation Kinetics and EDGAR Methodology , 2000 .

[24]  R. O. Meyer,et al.  Cladding swelling and rupture models for LOCA analysis. Technical report , 1980 .

[25]  Hermann Riedel,et al.  Fracture at high temperatures , 1987 .

[26]  Mohd. Kaleem Khan,et al.  A review on the clad failure studies , 2011 .

[27]  F. J. Erbacher,et al.  Burst criterion of Zircaloy fuel claddings in a loss-of-coolant accident , 1982 .

[28]  H. E. Rosinger A model to predict the failure of zircaloy-4 fuel sheathing during postulated loca conditions , 1984 .

[29]  C. Allibert,et al.  Solid state phase equilibria of zircaloy-4 in the temperature range 750–1050°C , 1982 .

[30]  L. Sepold,et al.  LWR fuel rod behavior in the FR2 in-pile tests simulating the heatup phase of a LOCA. Final report , 1983 .

[31]  Zoltán Hózer,et al.  Experimental database of E110 claddings under accident conditionsAEKI-FRL-2007-123-01/01, NEA-1799 IFPE/AEKI-EDB-E110 , 2007 .

[32]  F. J. Erbacher,et al.  A review of zircaloy fuel cladding behavior in a loss-of-coolant accident , 1985 .

[33]  A. Massih,et al.  Thermodynamic evaluation of the Nb–O–Zr system , 2007 .

[34]  F. J. Erbacher,et al.  Studies on Zircaloy Fuel Clad Ballooning in a Loss-of-Coolant Accident—Results of Burst Tests with Indirectly Heated Fuel Rod Simulators , 1979 .

[35]  G Hofmann,et al.  Zirconium Cladding Deformation in a Steam Environment with Transient Heating , 1979 .

[36]  Ali R Massih,et al.  Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions , 2007 .