A CLASS OF ASYNCHRONOUS PARALLEL MULTISPLITTING RELAXATION METHODS FOR LARGE SPARSE LINEAR COMPLEMENTARITY PROBLEMS

Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties,are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.