Inferring segmented surface description from stereo data

We present an integrated approach to the derivation of scene description from binocular stereo images. By inferring the scene description directly from local measurements of both point and line correspondences, we address both the stereo correspondence problem and the surface reconstruction problem simultaneously. We introduce a robust computational technique called tensor voting for the inference of scene description in terms of surfaces, junctions, and region boundaries. The methodology is grounded in two elements: tensor calculus for representation, and non-linear voting for data communication. By efficiently and effectively collecting and analyzing neighborhood information, we are able to handle the tasks of interpolation, discontinuity detection, and outlier identification simultaneously. The proposed method is non-iterative, robust to initialization and thresholding in the preprocessing stage, and the only critical free parameter is the size of the neighborhood. We illustrate the approach with results on a variety of images.

[1]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[3]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  Ruzena Bajcsy,et al.  On occluding contour artifacts in stereo vision , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Tomaso Poggio,et al.  A Theory of Human Stereo Vision , 1977 .

[6]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[7]  David Mumford,et al.  A Bayesian treatment of the stereo correspondence problem using half-occluded regions , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  C. Westin A Tensor Framework for Multidimensional Signal Processing , 1994 .

[9]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[10]  H. Knutsson Representing Local Structure Using Tensors , 1989 .

[11]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Gérard G. Medioni,et al.  Integrated surface, curve and junction inference from sparse 3-D data sets , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[13]  Rachid Deriche,et al.  Dense Depth Map Reconstruction: A Minimization and Regularization Approach which Preserves Discontinuities , 1996, ECCV.