Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor

[1]  Peter K. Kitanidis,et al.  Macrodispersion of sorbing solutes in heterogeneous porous formations with spatially periodic retardation factor and velocity field , 1992 .

[2]  Peter K. Kitanidis,et al.  Effective hydraulic conductivity for gradually varying flow , 1990 .

[3]  Peter K. Kitanidis,et al.  Analysis of one‐dimensional solute transport through porous media with spatially variable retardation factor , 1990 .

[4]  R. Knapp Spatial and temporal scales of local equilibrium in dynamic fluid-rock systems , 1989 .

[5]  H. Brenner,et al.  On the foundations of generalized Taylor dispersion theory , 1989, Journal of Fluid Mechanics.

[6]  T. N. Narasimhan,et al.  Redox‐controlled multiple‐species reactive chemical transport: 1. Model development , 1989 .

[7]  Albert J. Valocchi,et al.  Spatial moment analysis of the transport of kinetically adsorbing solutes through stratified aquifers , 1989 .

[8]  G. Dagan Flow and transport in porous formations , 1989 .

[9]  H. Selim,et al.  Simulated Transport of Multiple Cations in Soil Using Variable Selectivity Coefficients , 1988 .

[10]  W. Kinzelbach,et al.  The Random Walk Method in Pollutant Transport Simulation , 1988 .

[11]  Howard Brenner,et al.  Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium , 1988 .

[12]  S.E.A.T.M. van der Zee,et al.  Transport of reactive solute in spatially variable soil systems , 1987 .

[13]  A. Angelakis,et al.  Solutions for transport of two sorbed solutes with differing dispersion coefficients in soil , 1987 .

[14]  J. Bahr,et al.  Direct comparison of kinetic and local equilibrium formulations for solute transport affected by surface reactions , 1987 .

[15]  S. P. Garabedian,et al.  Large-scale dispersive transport in aquifers : field experiments and reactive transport theory , 1987 .

[16]  Mark N. Goltz,et al.  A natural gradient experiment on solute transport in a sand aquifer: 3. Retardation estimates and mass balances for organic solutes , 1986 .

[17]  A. Valocchi,et al.  Constraints on the Validity of Equilibrium and First-Order Kinetic Transport Models in Structured Soils , 1986 .

[18]  William P. Ball,et al.  Variability of aquifer sorption properties in a field experiment on groundwater transport of organic solutes: Methods and preliminary results , 1986 .

[19]  Mark N. Goltz,et al.  Interpreting organic solute transport data from a field experiment using physical nonequilibrium models , 1986 .

[20]  Cass T. Miller,et al.  Sorption of hydrophobic organic pollutants in saturated soil systems , 1986 .

[21]  Robert L. Street,et al.  A Groundwater Mass Transport and Equilibrium Chemistry Model for Multicomponent Systems , 1985 .

[22]  Albert J. Valocchi,et al.  Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils , 1985 .

[23]  A. Jennings,et al.  Instantaneous equilibrium approximation analysis , 1984 .

[24]  A. Jennings,et al.  Multicomponent solute transport with sorption and soluble complexation , 1984 .

[25]  J. W. Biggar,et al.  Modeling tritium and chloride 36 transport through an aggregated oxisol , 1983 .

[26]  C. Miller,et al.  Simulation of Solute Transport in a Chemically Reactive Heterogeneous System' Model Development and Application , 1983 .

[27]  H. Brenner A GENERAL THEORY OF TAYLOR DISPERSION PHENOMENA IV. Direct Coupling Effects , 1982 .

[28]  H. Brenner,et al.  Dispersion resulting from flow through spatically periodic porous media II. Surface and intraparticle transport , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  A. Jennings,et al.  Multicomponent equilibrium chemistry in groundwater quality models , 1982 .

[30]  H. Brenner,et al.  A general theory of Taylor dispersion phenomena , 1982 .

[31]  H. Brenner,et al.  General theory of Taylor dispersion phenomena. Part 3. Surface transport , 1982 .

[32]  Robert L. Street,et al.  Transport of ion‐exchanging solutes in groundwater: Chromatographic theory and field simulation , 1981 .

[33]  J. Pickens,et al.  Scale‐dependent dispersion in a stratified granular aquifer , 1981 .

[34]  H. Brenner,et al.  Dispersion resulting from flow through spatially periodic porous media , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  Franklin W. Schwartz,et al.  Mass transport: 1. A stochastic analysis of macroscopic dispersion , 1980 .

[36]  J. Rubin,et al.  Applicability of the local equilibrium assumption to transport through soils of solutes affected by ion exchange , 1979 .

[37]  A. Zuber,et al.  On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions , 1978 .

[38]  C. R. Cole,et al.  Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version) , 1977 .

[39]  F. Horn Calculation of dispersion coefficients by means of moments , 1971 .

[40]  R. Aris On the dispersion of a solute in a fluid flowing through a tube , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  Geoffrey Ingram Taylor,et al.  The dispersion of matter in turbulent flow through a pipe , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.