IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems

[1]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[2]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[3]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[4]  P. Wesseling,et al.  Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .

[5]  Sol Hellerman,et al.  Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .

[6]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[7]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[8]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[9]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[10]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[11]  D. R. Fokkema,et al.  BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .

[12]  M. B. Van Gijzen,et al.  A finite element discretization for stream-function problems on multiply connected domains , 1997 .

[13]  Gerard L. G. Sleijpen,et al.  Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.