IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems
暂无分享,去创建一个
[1] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[2] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[3] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[4] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[5] Sol Hellerman,et al. Normal Monthly Wind Stress Over the World Ocean with Error Estimates , 1983 .
[6] T. Manteuffel,et al. Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .
[7] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[8] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[9] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[10] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[11] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[12] M. B. Van Gijzen,et al. A finite element discretization for stream-function problems on multiply connected domains , 1997 .
[13] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.