On two supercongruences of truncated hypergeometric series $${}_{4}F_{3}$$

In this paper, we prove two supercongruences conjectured by Sun via the Wilf–Zeilberger method. One of them is, for any prime $$p>3$$ , $$\begin{aligned} {}_{4}F_{3}\bigg [\begin{array}{llll} \frac{7}{6}&{}\frac{1}{2}&{}\frac{1}{2}&{}\frac{1}{2}\\ &{}\frac{1}{6}&{}1&{}1\end{array}\bigg |\frac{1}{4}\bigg ]_{p-1}\equiv p(-1)^{(p-1)/2}-p^{3}E_{p-3}\pmod {p^{4}}, \end{aligned}$$ where $$E_{p-3}$$ is the $$(p-3)$$ th Euler number. In fact, this supercongruence is a generalization of a supercongruence of van Hamme.

[1]  Victor J. W. Guo,et al.  A q-microscope for supercongruences , 2018, Advances in Mathematics.

[2]  Zhi-Wei Sun,et al.  On congruences related to central binomial coefficients , 2009, 0911.2415.

[3]  F. Morley,et al.  Note on the Congruence 2 4n ≡(-) n (2n)!/(n!) 2 , Where 2n + 1 is a Prime , 1894 .

[4]  Zhi-Wei Sun,et al.  Super congruences and Euler numbers , 2011 .

[5]  Emma Lehmer,et al.  On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .

[6]  Ling Long,et al.  Hypergeometric evaluation identities and supercongruences , 2009, 0912.0197.

[7]  Wadim Zudilin,et al.  Ramanujan-type supercongruences , 2008, 0805.2788.

[8]  Yungui Chen,et al.  On some congruences of certain binomial sums , 2016 .

[9]  Victor J. W. Guo,et al.  Some congruences related to a congruence of Van Hamme , 2019, Integral Transforms and Special Functions.

[10]  Victor J. W. Guo A q -analogue of a Ramanujan-type supercongruence involving central binomial coefficients , 2018 .

[11]  Eric T. Mortenson,et al.  A p-ADIC SUPERCONGRUENCE CONJECTURE OF VAN HAMME , 2008 .

[12]  Victor J. W. Guo q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme , 2018, The Ramanujan Journal.

[13]  Zhi-Hong Sun,et al.  Congruences concerning Bernoulli numbers and Bernoulli polynomials , 2000, Discret. Appl. Math..

[14]  Bing He On the divisibility properties of certain binomial sums , 2015 .

[15]  Zhi-Wei Sun,et al.  A refinement of a congruence result by van Hamme and Mortenson , 2010, 1011.1902.

[16]  É. Lucas Theorie des Fonctions Numeriques Simplement Periodiques , 1878 .

[17]  Guo-Shuai Mao,et al.  On an extension of a van Hamme supercongruence , 2017 .

[18]  Frederick Pollock,et al.  On Certain Properties of Prime Numbers. , 1843 .

[19]  R. Osburn,et al.  On the (K.2) supercongruence of Van Hamme , 2015, 1504.01976.