Deblurring Images via Dark Channel Prior

We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.

[1]  Daniel Lemire,et al.  Streaming Maximum-Minimum Filter Using No More than Three Comparisons per Element , 2006, Nord. J. Comput..

[2]  Seungyong Lee,et al.  Text Image Deblurring Using Text-Specific Properties , 2012, ECCV.

[3]  Michael S. Brown,et al.  Richardson-Lucy Deblurring for Scenes under a Projective Motion Path , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Ming-Hsuan Yang,et al.  Good Regions to Deblur , 2012, ECCV.

[5]  Michal Irani,et al.  Blind Deblurring Using Internal Patch Recurrence , 2014, ECCV.

[6]  Bernhard Schölkopf,et al.  Learning to Deblur , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[8]  Ming-Hsuan Yang,et al.  Deblurring Low-Light Images with Light Streaks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.

[11]  Peyman Milanfar,et al.  Deblurring Using Regularized Locally Adaptive Kernel Regression , 2008, IEEE Transactions on Image Processing.

[12]  Thomas S. Huang,et al.  Sparse representation based blind image deblurring , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[13]  Deqing Sun,et al.  Blind Image Deblurring Using Dark Channel Prior , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[15]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Jian-Feng Cai,et al.  Framelet-Based Blind Motion Deblurring From a Single Image , 2012, IEEE Transactions on Image Processing.

[17]  Bernhard Schölkopf,et al.  Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database , 2012, ECCV.

[18]  Ankit Gupta,et al.  Single Image Deblurring Using Motion Density Functions , 2010, ECCV.

[19]  Ming-Hsuan Yang,et al.  Deblurring Face Images with Exemplars , 2014, ECCV.

[20]  Ming-Hsuan Yang,et al.  Deblurring Text Images via L0-Regularized Intensity and Gradient Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[22]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Jean Ponce,et al.  Learning a convolutional neural network for non-uniform motion blur removal , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[25]  Daniele Perrone,et al.  Total Variation Blind Deconvolution: The Devil Is in the Details , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Stefano Soatto,et al.  Direct Sparse Deblurring , 2010, Journal of Mathematical Imaging and Vision.

[27]  Bernhard Schölkopf,et al.  End-to-End Learning for Image Burst Deblurring , 2016, ACCV.

[28]  Dani Lischinski,et al.  Deblurring by Example Using Dense Correspondence , 2013, 2013 IEEE International Conference on Computer Vision.

[29]  Meng Wang,et al.  Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Seungyong Lee,et al.  Handling outliers in non-blind image deconvolution , 2011, 2011 International Conference on Computer Vision.

[31]  Ming-Hsuan Yang,et al.  $L_0$ -Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Ming-Hsuan Yang,et al.  Robust Kernel Estimation with Outliers Handling for Image Deblurring , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[34]  Qiang Wu,et al.  An effective document image deblurring algorithm , 2011, CVPR 2011.

[35]  Ayan Chakrabarti,et al.  A Neural Approach to Blind Motion Deblurring , 2016, ECCV.

[36]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[37]  Jiaya Jia,et al.  Mathematical models and practical solvers for uniform motion deblurring , 2014, Motion Deblurring.

[38]  Wei Xiong,et al.  Rotational Motion Deblurring of a Rigid Object from a Single Image , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[39]  Yair Weiss,et al.  From learning models of natural image patches to whole image restoration , 2011, 2011 International Conference on Computer Vision.

[40]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Daniele Perrone,et al.  A Logarithmic Image Prior for Blind Deconvolution , 2016, International Journal of Computer Vision.

[42]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[44]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[45]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[46]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[47]  Wolfgang Heidrich,et al.  Learning High-Order Filters for Efficient Blind Deconvolution of Document Photographs , 2016, ECCV.

[48]  Mohinder Malhotra Single Image Haze Removal Using Dark Channel Prior , 2016 .

[49]  Seungyong Lee,et al.  Fast motion deblurring , 2009, ACM Trans. Graph..