Oscillations and temporal signalling in cells

The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show ‘ultradian’ oscillations, with a time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NF-κB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour.

[1]  Julian Lewis Autoinhibition with Transcriptional Delay A Simple Mechanism for the Zebrafish Somitogenesis Oscillator , 2003, Current Biology.

[2]  A Goldbeter,et al.  Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Sneppen,et al.  Time delay as a key to apoptosis induction in the p53 network , 2002, cond-mat/0207236.

[4]  G Weber,et al.  Enzyme regulation. , 1967, Science.

[5]  El Houssine Snoussi Necessary Conditions for Multistationarity and Stable Periodicity , 1998 .

[6]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[7]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[8]  M Schnarr,et al.  DNA binding properties of the LexA repressor. , 1991, Biochimie.

[9]  C. Harris,et al.  Mutations in the p 53 Tumor Suppressor Gene : Clues to Cancer Etiology and Molecular , 2006 .

[10]  O. Pourquié The Segmentation Clock: Converting Embryonic Time into Spatial Pattern , 2003, Science.

[11]  C. Johnson,et al.  Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. , 1998, Science.

[12]  K. Sneppen,et al.  Minimal model of spiky oscillations in NF-κB signaling , 2006 .

[13]  A Goldbeter,et al.  A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Fersht,et al.  Molecular mechanism of the interaction between MDM2 and p53. , 2002, Journal of molecular biology.

[15]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[16]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[17]  C. Harris,et al.  Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. , 1994, Cancer research.

[18]  D. Lane,et al.  What the papers say: The p53‐mdm2 autoregulatory feedback loop: A paradigm for the regulation of growth control by p53? , 1993 .

[19]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  A dynamic P53-MDM2 model with time delay , 2005, math/0507055.

[21]  J Reidl,et al.  Model of calcium oscillations due to negative feedback in olfactory cilia. , 2006, Biophysical journal.

[22]  Albert Goldbeter,et al.  A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Mallet-Paret,et al.  The Poincare-Bendixson theorem for monotone cyclic feedback systems , 1990 .

[24]  D. Opris,et al.  A dynamic p53-mdm2 model with delay kernel , 2006 .

[25]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[26]  H. Hirata,et al.  Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop , 2002, Science.

[27]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[28]  N. D. Hayes Roots of the Transcendental Equation Associated with a Certain Difference‐Differential Equation , 1950 .

[29]  Juan F. Poyatos,et al.  Dynamical Principles of Two-Component Genetic Oscillators , 2006, PLoS Comput. Biol..

[30]  Jie Chen,et al.  A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock , 2006, Science.

[31]  J. W. Little,et al.  The SOS regulatory system: control of its state by the level of RecA protease. , 1983, Journal of molecular biology.

[32]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[33]  K. Tomita,et al.  bHLH transcription factors and mammalian neuronal differentiation. , 1997, The international journal of biochemistry & cell biology.

[34]  Kim Sneppen,et al.  Structure and function of negative feedback loops at the interface of genetic and metabolic networks , 2006, Nucleic acids research.

[35]  J. Gouzé Positive and Negative Circuits in Dynamical Systems , 1998 .

[36]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[37]  U Alon,et al.  Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[39]  Hana Kim,et al.  A Fourth IκB Protein within the NF-κB Signaling Module , 2007, Cell.

[40]  Albert Goldbeter,et al.  Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae , 2003, The Journal of cell biology.

[41]  Haruhiko Soma,et al.  Transcriptional oscillation of canonical clock genes in mouse peripheral tissues , 2004, BMC Molecular Biology.

[42]  I. Dodd,et al.  Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny. , 2001, Genes & development.

[43]  C Jayaprakash,et al.  NF-kappaB oscillations and cell-to-cell variability. , 2005, Journal of theoretical biology.

[44]  Susan S. Golden,et al.  CYANOBACTERIAL CIRCADIAN RHYTHMS. , 1997, Annual review of plant physiology and plant molecular biology.

[45]  M. Oren,et al.  p53 in growth control and neoplasia. , 1996, Biochimica et biophysica acta.

[46]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Galit Lahav,et al.  The Strength of Indecisiveness: Oscillatory Behavior for Better Cell Fate Determination , 2004, Science's STKE.

[48]  E. Conrad Mathematical Models of Biochemical Oscillations , 1999 .

[49]  K Ribbeck,et al.  Kinetic analysis of translocation through nuclear pore complexes , 2001, The EMBO journal.

[50]  Bernhard G Herrmann,et al.  Segmentation in vertebrates: clock and gradient finally joined. , 2004, Genes & development.

[51]  Alexander Hoffmann,et al.  IκBɛ provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression , 2006, The Journal of cell biology.

[52]  K. Sneppen,et al.  Sustained oscillations and time delays in gene expression of protein Hes1 , 2003, FEBS letters.

[53]  H. Pahl Activators and target genes of Rel/NF-κB transcription factors , 1999, Oncogene.

[54]  Marek Kimmel,et al.  Mathematical model of NF- κB regulatory module , 2004 .

[55]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[57]  William H. Press,et al.  Numerical recipes in C , 2002 .

[58]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[59]  Andre Levchenko,et al.  Comment on "Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression" , 2005, Science.

[60]  D. Endy,et al.  Decoding NF-κB Signaling , 2002, Science.

[61]  Minoru Kanehisa,et al.  Global Analysis of Circadian Expression in the Cyanobacterium Synechocystis sp. Strain PCC 6803 , 2005, Journal of bacteriology.

[62]  S. Semsey,et al.  Three-stage regulation of the amphibolic gal operon: from repressosome to GalR-free DNA. , 2006, Journal of molecular biology.

[63]  Sandeep Krishna,et al.  Oscillation patterns in negative feedback loops , 2006, Proceedings of the National Academy of Sciences.

[64]  Mechanisms and Biological Significance of Pulsatile Hormone Secretion , 2000 .

[65]  H. Pahl,et al.  Activators and target genes of Rel/NF-kappaB transcription factors. , 1999, Oncogene.

[66]  R. D. Bliss,et al.  Role of feedback inhibition in stabilizing the classical operon. , 1982, Journal of theoretical biology.

[67]  Hana Kim,et al.  A fourth IkappaB protein within the NF-kappaB signaling module. , 2007, Cell.

[68]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[69]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[70]  Jeffrey W. Roberts,et al.  Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. , 1990, Journal of molecular biology.

[71]  Heike Brand,et al.  Estrogen Receptor-α Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter , 2003, Cell.

[72]  Gioacchino Natoli,et al.  A hyper‐dynamic equilibrium between promoter‐bound and nucleoplasmic dimers controls NF‐κB‐dependent gene activity , 2006, The EMBO journal.