The human visual cortex.

The discovery and analysis of cortical visual areas is a major accomplishment of visual neuroscience. In the past decade the use of noninvasive functional imaging, particularly functional magnetic resonance imaging (fMRI), has dramatically increased our detailed knowledge of the functional organization of the human visual cortex and its relation to visual perception. The fMRI method offers a major advantage over other techniques applied in neuroscience by providing a large-scale neuroanatomical perspective that stems from its ability to image the entire brain essentially at once. This bird's eye view has the potential to reveal large-scale principles within the very complex plethora of visual areas. Thus, it could arrange the entire constellation of human visual areas in a unified functional organizational framework. Here we review recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing.

[1]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[2]  J. C. Meadows,et al.  Cerebral color blindness: An acquired defect in hue discrimination , 1979, Annals of neurology.

[3]  A. Damasio,et al.  Central achromatopsia , 1980, Neurology.

[4]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[5]  J. Horton,et al.  Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[8]  E. Schwartz,et al.  On the mathematical structure of the visuotopic mapping of macaque striate cortex. , 1985, Science.

[9]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[10]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[11]  Karl J. Friston,et al.  The colour centre in the cerebral cortex of man , 1989, Nature.

[12]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[14]  F M de Monasterio,et al.  Arrangement of ocular dominance columns in human visual cortex. , 1990, Archives of ophthalmology.

[15]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[16]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  L. Jakobson,et al.  A neurological dissociation between perceiving objects and grasping them , 1991, Nature.

[18]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[19]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[20]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[23]  K Tanaka,et al.  Neuronal mechanisms of object recognition. , 1993, Science.

[24]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[25]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[26]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[27]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[28]  R. Malach Cortical columns as devices for maximizing neuronal diversity , 1994, Trends in Neurosciences.

[29]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[30]  D. Perrett,et al.  Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. , 1994, Cerebral cortex.

[31]  S. Clarke,et al.  Association and intrinsic connections of human extrastriate visual cortex , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  S. Clarke,et al.  Modular Organization of Human Extrastriate Visual Cortex: Evidence from Cytochrome Oxidase Pattern in Normal and Macular Degeneration Cases , 1994, The European journal of neuroscience.

[33]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[34]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[35]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[36]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[37]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[39]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  N Lavie,et al.  On the spatial extent of attention in object-based visual selection , 1996, Perception & psychophysics.

[41]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[42]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[43]  P. H. Schiller On the specificity of neurons and visual areas , 1996, Behavioural Brain Research.

[44]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Horton,et al.  Pattern of ocular dominance columns in human striate cortex in strabismic amblyopia , 1996, Visual Neuroscience.

[46]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[47]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[48]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[49]  S. Engel,et al.  Colour tuning in human visual cortex measured with functional magnetic resonance imaging , 1997, Nature.

[50]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[51]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[52]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[53]  S. Zeki,et al.  The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. , 1997, Brain : a journal of neurology.

[54]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[55]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[56]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[57]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[58]  K. Nakayama,et al.  Binocular Rivalry and Visual Awareness in Human Extrastriate Cortex , 1998, Neuron.

[59]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[60]  N. Kanwisher,et al.  Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. , 1998, Journal of neurophysiology.

[61]  Karl J. Friston,et al.  The functional anatomy of attention to visual motion. A functional MRI study. , 1998, Brain : a journal of neurology.

[62]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[63]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[64]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[65]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[66]  M. D’Esposito,et al.  An Area within Human Ventral Cortex Sensitive to “Building” Stimuli Evidence and Implications , 1998, Neuron.

[67]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[68]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[69]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[70]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[71]  B. Wandell Computational neuroimaging of human visual cortex. , 1999, Annual review of neuroscience.

[72]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[73]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[74]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[76]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[77]  Jonathan E. Jennings,et al.  An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. , 1999, Cerebral cortex.

[78]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[79]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[80]  R. Dolan,et al.  Contrast polarity and face recognition in the human fusiform gyrus , 1999, Nature Neuroscience.

[81]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Brian A. Wandell,et al.  Computational Neuroimaging: Color Representations and Processing , 1999 .

[83]  Leslie G. Ungerleider,et al.  The Effect of Face Inversion on Activity in Human Neural Systems for Face and Object Perception , 1999, Neuron.

[84]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[85]  C. Frith,et al.  Modulation of human visual cortex by crossmodal spatial attention. , 2000, Science.

[86]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[87]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[88]  Nikos Logothetis,et al.  Can current fMRI techniques reveal the micro-architecture of cortex? , 2000, Nature Neuroscience.

[89]  Nouchine Hadjikhani,et al.  Attention — brains at work! , 2000, Nature Neuroscience.

[90]  Leslie G. Ungerleider,et al.  The Representation of Objects in the Human Occipital and Temporal Cortex , 2000, Journal of Cognitive Neuroscience.

[91]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[92]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[93]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[94]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[95]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[96]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[97]  S Lehéricy,et al.  The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. , 2000, Brain : a journal of neurology.

[98]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[99]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[100]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[101]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[102]  Ravi S. Menon,et al.  The effects of visual object priming on brain activation before and after recognition , 2000, Current Biology.

[103]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[104]  Leslie G. Ungerleider,et al.  Texture segregation in the human visual cortex: A functional MRI study. , 2000, Journal of neurophysiology.

[105]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M. Bar,et al.  Cortical Mechanisms Specific to Explicit Visual Object Recognition , 2001, Neuron.

[107]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[108]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[109]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[110]  T. Hendler,et al.  Visuo-haptic object-related activation in the ventral visual pathway , 2001, Nature Neuroscience.

[111]  Ravi S. Menon,et al.  Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. , 2001, Journal of neurophysiology.

[112]  T. Hendler,et al.  A hierarchical axis of object processing stages in the human visual cortex. , 2001, Cerebral cortex.

[113]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[114]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[115]  N. Kanwisher,et al.  The Human Body , 2001 .

[116]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[117]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[118]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[119]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[120]  David J. Fleet,et al.  Human cortical activity correlates with stereoscopic depth perception. , 2001, Journal of neurophysiology.

[121]  Eleanor A. Maguire,et al.  Distinct Neural Systems for the Encoding and Recognition of Topography and Faces , 2001, NeuroImage.

[122]  Talma Hendler,et al.  Vase or face? A neural correlate of shape-selective grouping processes in the human brain , 2001, NeuroImage.

[123]  Rainer Goebel,et al.  Activity patterns in human motion sensitive areas depend on the interpretation of global motion , 2001, NeuroImage.

[124]  Joan Y. Chiao,et al.  Differential responses in the fusiform region to same-race and other-race faces , 2001, Nature Neuroscience.

[125]  Á. Pascual-Leone,et al.  Fast Backprojections from the Motion to the Primary Visual Area Necessary for Visual Awareness , 2001, Science.

[126]  J. Driver,et al.  Segmentation, attention and phenomenal visual objects , 2001, Cognition.

[127]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[128]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[129]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[130]  Rainer Goebel,et al.  Activity patterns in human motion-sensitive areas depend on the interpretation of global motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[131]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[132]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[133]  Ravi S. Menon,et al.  Differential Effects of Viewpoint on Object-Driven Activation in Dorsal and Ventral Streams , 2002, Neuron.

[134]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[135]  David J. Heeger,et al.  Pattern-motion responses in human visual cortex , 2002, Nature Neuroscience.

[136]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[137]  Karl J. Friston,et al.  The Neural Structures Expressing Perceptual Hysteresis in Visual Letter Recognition , 2002, Neuron.

[138]  N. Kanwisher,et al.  How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI Study , 2002, Neuron.

[139]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[140]  Shimon Ullman,et al.  Shape‐selective stereo processing in human object‐related visual areas , 2002, Human brain mapping.

[141]  R. Goebel,et al.  The role of feedback in shaping neural representations in cat visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[142]  P Vuilleumier,et al.  Neural response to emotional faces with and without awareness: event-related fMRI in a parietal patient with visual extinction and spatial neglect , 2002, Neuropsychologia.

[143]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[144]  Timothy J. Andrews,et al.  Activity in the Fusiform Gyrus Predicts Conscious Perception of Rubin's Vase–Face Illusion , 2002, NeuroImage.

[145]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[146]  R. Dolan,et al.  Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study , 2002, Neuropsychologia.

[147]  T. Hendler,et al.  Object-completion effects in the human lateral occipital complex. , 2002, Cerebral cortex.

[148]  Talma Hendler,et al.  Analysis of the Neuronal Selectivity Underlying Low fMRI Signals , 2002, Current Biology.

[149]  R. Henson,et al.  Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming , 2002, Nature Neuroscience.

[150]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[151]  Rainer Goebel,et al.  Apparent Motion: Event-Related Functional Magnetic Resonance Imaging of Perceptual Switches and States , 2002, The Journal of Neuroscience.

[152]  Ravi S. Menon,et al.  Haptic study of three-dimensional objects activates extrastriate visual areas , 2002, Neuropsychologia.

[153]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[154]  T. Hendler,et al.  Contrast sensitivity in human visual areas and its relationship to object recognition. , 2002, Journal of neurophysiology.

[155]  Brian A. Wandell,et al.  Chromatic Light Adaptation Measured using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[156]  Bettina Sorger,et al.  Human Cortical Object Recognition from a Visual Motion Flowfield , 2003, The Journal of Neuroscience.

[157]  N. Rubin,et al.  fMRI Activation in Response to Illusory Contours and Salient Regions in the Human Lateral Occipital Complex , 2003, Neuron.

[158]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[159]  Talma Hendler,et al.  Spatial vs. object specific attention in high-order visual areas , 2003, NeuroImage.

[160]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[161]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[162]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[163]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[164]  T. Allison,et al.  Brain Activity Evoked by the Perception of Human Walking: Controlling for Meaningful Coherent Motion , 2003, The Journal of Neuroscience.

[165]  Pia Rotshtein,et al.  Sensing the invisible: differential sensitivity of visual cortex and amygdala to traumatic context , 2003, NeuroImage.

[166]  Doris Y. Tsao,et al.  Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex , 2003, The Journal of Neuroscience.

[167]  Ravi S. Menon,et al.  Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas , 2003, Experimental Brain Research.

[168]  H. Bülthoff,et al.  Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex , 2003, Current Biology.

[169]  T. Hendler,et al.  Area-Specific Amblyopic Effects in Human Occipitotemporal Object Representations , 2003, Neuron.

[170]  Kalanit Grill-Spector,et al.  The functional organization of the ventral visual pathway and its relationship to object recognition , 2003 .

[171]  R. Malach,et al.  Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind , 2003, Nature Neuroscience.

[172]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[173]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[174]  N. Logothetis,et al.  Integration of Local Features into Global Shapes Monkey and Human fMRI Studies , 2003, Neuron.

[175]  Tutis Vilis,et al.  The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. , 2003, Cerebral cortex.

[176]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[177]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[178]  David J. Heeger,et al.  Neuronal correlates of perception in early visual cortex , 2003, Nature Neuroscience.

[179]  N. Kanwisher,et al.  The fusiform face area subserves face perception, not generic within-category identification , 2004, Nature Neuroscience.

[180]  R. Malach,et al.  Intersubject Synchronization of Cortical Activity During Natural Vision , 2004, Science.

[181]  Talma Hendler,et al.  Enhanced temporal non-linearities in human object-related occipito-temporal cortex. , 2004, Cerebral cortex.

[182]  Rafael Malach,et al.  Functional analysis of the periphery effect in human building related areas , 2004, Human brain mapping.

[183]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[184]  D. Regan On the Mathematical Structure of the Visuotopic Mapping of Macaque Striate Cortex , .