Using Predictions in Online Optimization: Looking Forward with an Eye on the Past

We consider online convex optimization (OCO) problems with switching costs and noisy predictions. While the design of online algorithms for OCO problems has received considerable attention, the design of algorithms in the context of noisy predictions is largely open. To this point, two promising algorithms have been proposed: Receding Horizon Control (RHC) and Averaging Fixed Horizon Control (AFHC). The comparison of these policies is largely open. AFHC has been shown to provide better worst-case performance, while RHC outperforms AFHC in many realistic settings. In this paper, we introduce a new class of policies, Committed Horizon Control (CHC), that generalizes both RHC and AFHC. We provide average-case analysis and concentration results for CHC policies, yielding the first analysis of RHC for OCO problems with noisy predictions. Further, we provide explicit results characterizing the optimal CHC policy as a function of properties of the prediction noise, e.g., variance and correlation structure. Our results provide a characterization of when AFHC outperforms RHC and vice versa, as well as when other CHC policies outperform both RHC and AFHC.

[1]  Lin Xiao,et al.  Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization , 2009, J. Mach. Learn. Res..

[2]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[3]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[4]  Demosthenis Teneketzis,et al.  Multi-armed bandits with switching penalties , 1996, IEEE Trans. Autom. Control..

[5]  Lachlan L. H. Andrew,et al.  Dynamic Right-Sizing for Power-Proportional Data Centers , 2011, IEEE/ACM Transactions on Networking.

[6]  Giovanni De Micheli,et al.  Multicore thermal management with model predictive control , 2009, 2009 European Conference on Circuit Theory and Design.

[7]  Baochun Li,et al.  Quality-assured cloud bandwidth auto-scaling for video-on-demand applications , 2012, 2012 Proceedings IEEE INFOCOM.

[8]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[9]  Mor Harchol-Balter,et al.  Server farms with setup costs , 2010, Perform. Evaluation.

[10]  Hamed Mohsenian Rad,et al.  Exploring smart grid and data center interactions for electric power load balancing , 2014, PERV.

[11]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[12]  Georgios B. Giannakis,et al.  Real-time electricity pricing for demand response using online convex optimization , 2014, ISGT 2014.

[13]  Marko Bacic,et al.  Model predictive control , 2003 .

[14]  Adam Wierman,et al.  Pricing data center demand response , 2014, SIGMETRICS '14.

[15]  Manish Marwah,et al.  Minimizing data center SLA violations and power consumption via hybrid resource provisioning , 2011, 2011 International Green Computing Conference and Workshops.

[16]  Lachlan L. H. Andrew,et al.  A tale of two metrics: simultaneous bounds on competitiveness and regret , 2013, SIGMETRICS '13.

[17]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[18]  Luca Benini,et al.  A distributed and self-calibrating model-predictive controller for energy and thermal management of high-performance multicores , 2011, 2011 Design, Automation & Test in Europe.

[19]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[20]  Jerome A. Rolia,et al.  Workload Analysis and Demand Prediction of Enterprise Data Center Applications , 2007, 2007 IEEE 10th International Symposium on Workload Characterization.

[21]  Xiaorui Wang,et al.  Cluster-level feedback power control for performance optimization , 2008, 2008 IEEE 14th International Symposium on High Performance Computer Architecture.

[22]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[23]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[24]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[25]  Minghua Chen,et al.  Online energy generation scheduling for microgrids with intermittent energy sources and co-generation , 2012, SIGMETRICS '13.

[26]  Gustavo de Veciana,et al.  Variability Aware Network Utility Maximization , 2011, ArXiv.

[27]  Adam Wierman,et al.  Data center demand response: avoiding the coincident peak via workload shifting and local generation , 2013, SIGMETRICS '13.

[28]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[29]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[30]  Kirk Pruhs,et al.  A 2-Competitive Algorithm For Online Convex Optimization With Switching Costs , 2015, APPROX-RANDOM.

[31]  Lachlan L. H. Andrew,et al.  Online Convex Optimization Using Predictions , 2015, SIGMETRICS.

[32]  Carlos Bordons Alba,et al.  Model Predictive Control , 2012 .

[33]  Sudipto Guha,et al.  Multi-armed Bandits with Metric Switching Costs , 2009, ICALP.

[34]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[35]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[36]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[37]  T. S. Jayram,et al.  Online optimization for the smart (micro) grid , 2012, 2012 Third International Conference on Future Systems: Where Energy, Computing and Communication Meet (e-Energy).

[38]  Nagarajan Kandasamy,et al.  Power and performance management of virtualized computing environments via lookahead control , 2008, 2008 International Conference on Autonomic Computing.

[39]  Adam Wierman,et al.  Distributional analysis for model predictive deferrable load control , 2014, 53rd IEEE Conference on Decision and Control.

[40]  Scott Shenker,et al.  Usenix Association 10th Usenix Symposium on Networked Systems Design and Implementation (nsdi '13) 185 Effective Straggler Mitigation: Attack of the Clones , 2022 .

[41]  Gustavo de Veciana,et al.  Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs , 2012, 2012 Proceedings IEEE INFOCOM.

[42]  Rajesh Gupta,et al.  Energy Efficient Geographical Load Balancing via Dynamic Deferral of Workload , 2012, 2012 IEEE Fifth International Conference on Cloud Computing.

[43]  Santosh S. Vempala,et al.  Efficient algorithms for online decision problems , 2005, J. Comput. Syst. Sci..

[44]  Allan Borodin,et al.  An optimal on-line algorithm for metrical task system , 1992, JACM.

[45]  Yuval Rabani,et al.  A decomposition theorem and bounds for randomized server problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[46]  Randy H. Katz,et al.  NapSAC: design and implementation of a power-proportional web cluster , 2010, CCRV.

[47]  Adam Wierman,et al.  Real-time deferrable load control: handling the uncertainties of renewable generation , 2013, e-Energy '13.

[48]  Lachlan L. H. Andrew,et al.  Online algorithms for geographical load balancing , 2012, 2012 International Green Computing Conference (IGCC).

[49]  Abderrahmane Haddad,et al.  Estimation theory with applications to communications and control , 1972 .

[50]  Pieter Abbeel,et al.  Motion planning with sequential convex optimization and convex collision checking , 2014, Int. J. Robotics Res..

[51]  Stephen P. Boyd,et al.  Online convex optimization-based algorithm for thermal management of MPSoCs , 2010, GLSVLSI '10.