Weak convergence of stochastic integrals and differential equations II: Infinite dimensional case

[1]  Adam Jakubowski,et al.  A Non-Skorohod Topology on the Skorohod Space , 1997 .

[2]  Continuity of the Ito stochastic integral in Hilbert spaces , 1996 .

[3]  Peter Donnelly,et al.  A countable representation of the Fleming-Viot measure-valued diffusion , 1996 .

[4]  S. Méléard Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models , 1996 .

[5]  Weak convergence of stochastic integrals driven by martingale measure , 1995 .

[6]  P. Kotelenez A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation , 1995 .

[7]  E. Perkins On the Martingale Problem for Interactive Measure-Valued Branching Diffusions , 1995 .

[8]  G. Kallianpur,et al.  Asymptotic behavior of a system of interacting nuclear-space-valued stochastic differential equations driven by Poisson random measures , 1994 .

[9]  G. Kallianpur,et al.  Stochastic models of environmental pollution , 1994, Advances in Applied Probability.

[10]  Weak approximation of stochastic equations , 1993 .

[11]  M. Zakai,et al.  Worthy martingales and integrators , 1993 .

[12]  K. Twardowska Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions , 1993 .

[13]  J. Zabczyk The Fractional Calculus and Stochastic Evolution Equations , 1993 .

[14]  Carl Graham,et al.  McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets , 1992 .

[15]  Giuseppe Da Prato,et al.  A note on stochastic convolution , 1992 .

[16]  S. Méléard Representation and approximation of martingale measures , 1992 .

[17]  Thomas G. Kurtz,et al.  Averaging for martingale problems and stochastic approximation , 1992 .

[18]  Douglas Blount,et al.  Comparison of Stochastic and Deterministic Models of a Linear Chemical Reaction with Diffusion , 1991 .

[19]  On the theorem of T. Yamada and S. Watanabe , 1991 .

[20]  Thomas G. Kurtz,et al.  Random Time Changes and Convergence in Distribution Under the Meyer-Zheng Conditions , 1991 .

[21]  P. Protter,et al.  Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .

[22]  Keigo Yamada,et al.  Stability theorem for stochastic differential equations with jumps , 1991 .

[23]  G. Jetschke Lattice Approximation of a Nonlinear Stochastic Partial Differential Equation with White Noise , 1991 .

[24]  Philip Protter,et al.  Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's , 1991 .

[25]  Mark H. A. Davis,et al.  Applied Stochastic Analysis , 1991 .

[26]  P. Protter Stochastic integration and differential equations , 1990 .

[27]  J. Mémin,et al.  Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .

[28]  G. Kallianpur,et al.  Weak convergence of solutions of stochastic evolution equations on nuclear spaces , 1989 .

[29]  I. Gyöngy On the approximation of stochastic partial differential equations II , 1988 .

[30]  F. Flandoli,et al.  A convergence result for stochastic partial differential equations , 1988 .

[31]  D. Aldous Review: Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and convergence , 1987 .

[32]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[33]  Akira Ichikawa,et al.  Some inequalities for martingales and stochastic convolutions , 1986 .

[34]  T. Liggett Interacting Particle Systems , 1985 .

[35]  C. Stricker Lois de semimartingales et critères de compacité , 1985 .

[36]  L. Tubaro,et al.  An estimate of Burkholder type for stochastic processes defined by the stochastic integral , 1984 .

[37]  P. Kotelenez A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations , 1984 .

[38]  Weian Zheng,et al.  Tightness criteria for laws of semimartingales , 1984 .

[39]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[40]  S. Ustunel Stochastic integration on nuclear spaces and its applications , 1982 .

[41]  K. Chung,et al.  Seminar on Stochastic Processes, 1981 , 1982 .

[42]  P. Kotelenez A submartingale type inequality with applicatinos to stochastic evolution equations , 1982 .

[43]  D. Aldous The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .

[44]  Erhan Çinlar,et al.  Representation of Semimartingale Markov Processes in Terms of Wiener Processes and Poisson Random Measures , 1981 .

[45]  T. Kurtz Representations of Markov Processes as Multiparameter Time Changes , 1980 .

[46]  A. Shimizu,et al.  Infinite dimensional stochastic differential equations and their applications , 1980 .

[47]  D. Lépingle,et al.  Présentation unifiée de certaines inégalités de la théorie des martingales , 1980 .

[48]  Timothy C. Brown,et al.  A Martingale Approach to the Poisson Convergence of Simple Point Processes , 1978 .

[49]  D. Burkholder Distribution Function Inequalities for Martingales , 1973 .

[50]  T. Liggett Existence theorems for infinite particle systems , 1972 .

[51]  Shinzo Watanabe,et al.  On the uniqueness of solutions of stochastic difierential equations , 1971 .

[52]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[53]  R. Has’minskiĭ On Stochastic Processes Defined by Differential Equations with a Small Parameter , 1966 .

[54]  R. Khas'minskii A Limit Theorem for the Solutions of Differential Equations with Random Right-Hand Sides , 1966 .

[55]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[56]  J. Doob Stochastic processes , 1953 .

[57]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .