An overabundance of black hole X-ray binaries in the Galactic Centre from tidal captures

A large population of X-ray binaries (XRBs) was recently discovered within the central parsec of the Galaxy by Hailey et al. While the presence of compact objects on this scale due to radial mass segregation is, in itself, unsurprising, the fraction of binaries would naively be expected to be small because of how easily primordial binaries are dissociated in the dynamically hot environment of the nuclear star cluster (NSC). We propose that the formation of XRBs in the central parsec is dominated by the tidal capture of stars by black holes (BHs) and neutron stars (NSs). We model the time-dependent radial density profiles of stars and compact objects in the NSC with a Fokker-Planck approach, using the present-day stellar population and rate of in situ massive star (and thus compact object) formation as observational constraints. Of the ~10,000-40,000 BHs that accumulate in the central parsec over the age of the Galaxy, we predict that ~60 - 200 currently exist as BH-XRBs formed from tidal capture, consistent with the population seen by Hailey et al. A somewhat lower number of tidal capture NS-XRBs is also predicted. We also use our observationally calibrated models for the NSC to predict rates of other exotic dynamical processes, such as the tidal disruption of stars by the central supermassive black hole (~0.0001 per year at z=0).

[1]  Franz E. Bauer,et al.  A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy , 2018, Nature.

[2]  B. Kocsis,et al.  Black Hole Disks in Galactic Nuclei. , 2018, Physical review letters.

[3]  S. Chatterjee,et al.  How Black Holes Shape Globular Clusters: Modeling NGC 3201 , 2018, 1802.09553.

[4]  R. Spurzem,et al.  Classification of Tidal Disruption Events Based on Stellar Orbital Properties , 2018, 1802.06798.

[5]  M. Giersz,et al.  MOCCA-Survey Database I: Galactic globular clusters harbouring a black hole subsystem , 2018, 1802.05284.

[6]  R. Sari,et al.  Steeper Stellar Cusps in Galactic Centers from Binary Disruption , 2017, 1712.03242.

[7]  Aaron M. Geller,et al.  On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening , 2017, 1711.10494.

[8]  Timothy D. Brandt,et al.  Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history , 2017, Monthly Notices of the Royal Astronomical Society.

[9]  M. Colpi,et al.  Probing the formation history of the nuclear star cluster at the Galactic Centre with millisecond pulsars , 2017, 1708.01627.

[10]  S. Velzen On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons , 2017, 1707.03458.

[11]  Yanqin Wu Diffusive Tidal Evolution for Migrating Hot Jupiters , 2017, 1710.02542.

[12]  S. Chatterjee,et al.  Accreting Black Hole Binaries in Globular Clusters , 2017, 1709.05444.

[13]  E. Vasiliev A New Fokker–Planck Approach for the Relaxation-driven Evolution of Galactic Nuclei , 2017, 1709.04467.

[14]  R. Genzel,et al.  Twelve Years of Spectroscopic Monitoring in the Galactic Center: The Closest Look at S-stars near the Black Hole , 2017, 1708.06353.

[15]  R. Sari,et al.  Mass loss through the L2 Lagrange point - Application to Main Sequence EMRI , 2017, 1705.01435.

[16]  S. Gezari,et al.  iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy , 2017, 1703.00965.

[17]  Javier A. García,et al.  The ultracompact nature of the black hole candidate X-ray binary 47 Tuc X9 , 2017, 1702.02167.

[18]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's central black hole II: Diffuse light from sub-giants and dwarfs , 2017, 1701.03817.

[19]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's black hole III: Comparison with simulations , 2017, 1701.03818.

[20]  J. Ostriker,et al.  Formation of massive black holes in galactic nuclei: runaway tidal encounters , 2016, 1606.01909.

[21]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[22]  J. Guillochon,et al.  New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths , 2016, 1611.02291.

[23]  C. Kochanek Tidal disruption event demographics , 2016 .

[24]  M. Shara,et al.  On the origins of enigmatic stellar populations in Local Group galactic nuclei , 2016, 1608.02944.

[25]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[26]  L. Chomiuk,et al.  THE FIRST LOW-MASS BLACK HOLE X-RAY BINARY IDENTIFIED IN QUIESCENCE OUTSIDE OF A GLOBULAR CLUSTER , 2016, 1605.00270.

[27]  A. Ghez,et al.  Merging Binaries in the Galactic Center: The eccentric Kozai-Lidov mechanism with stellar evolution , 2016, 1603.02709.

[28]  J. Lombardi,et al.  MICRO-TIDAL DISRUPTION EVENTS BY STELLAR COMPACT OBJECTS AND THE PRODUCTION OF ULTRA-LONG GRBs , 2016, 1602.07698.

[29]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[30]  T. Bogdanović,et al.  CAN STAR–DISK COLLISIONS EXPLAIN THE MISSING RED GIANTS PROBLEM IN THE GALACTIC CENTER? , 2016, 1602.03527.

[31]  J. Prieto,et al.  ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc , 2016, 1602.01088.

[32]  S. Naoz The Eccentric Kozai-Lidov Effect and Its Applications , 2016, 1601.07175.

[33]  T. Alexander,et al.  STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE , 2015, 1508.01390.

[34]  D. Aharon,et al.  THE HISTORY OF TIDAL DISRUPTION EVENTS IN GALACTIC NUCLEI , 2015, 1507.08287.

[35]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[36]  B. Metzger,et al.  A bright year for tidal disruptions , 2015, 1506.03453.

[37]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[38]  F. Bauer,et al.  BlackCAT: A catalogue of stellar-mass black holes in X-ray transients , 2015, 1510.08869.

[39]  H. Janka,et al.  CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.

[40]  Alberta.,et al.  Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate , 2015, 1509.02579.

[41]  Timothy D. Brandt,et al.  DISRUPTED GLOBULAR CLUSTERS CAN EXPLAIN THE GALACTIC CENTER GAMMA-RAY EXCESS , 2015, 1507.05616.

[42]  D. A. Kann,et al.  A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst , 2015, Nature.

[43]  Kristin K. Madsen,et al.  Extended hard-X-ray emission in the inner few parsecs of the Galaxy , 2015, Nature.

[44]  D. Merritt Gravitational Encounters and the Evolution of Galactic Nuclei. I. Method , 2015, 1505.07516.

[45]  N. Gehrels,et al.  The Swift X-ray monitoring campaign of the center of the Milky Way , 2015, 1503.07524.

[46]  Mike McCourt,et al.  Going with the flow: using gas clouds to probe the accretion flow feeding Sgr A* , 2015, 1503.04801.

[47]  J. Guillochon,et al.  A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT? , 2014, 1410.6014.

[48]  D. Aharon,et al.  FORMATION AND EVOLUTION OF NUCLEAR STAR CLUSTERS WITH IN SITU STAR FORMATION: NUCLEAR CORES AND AGE SEGREGATION , 2014, 1409.5121.

[49]  F. Rasio,et al.  THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS , 2014, 1409.0866.

[50]  G. Farrar,et al.  MEASUREMENT OF THE RATE OF STELLAR TIDAL DISRUPTION FLARES , 2014, 1407.6425.

[51]  R. Capuzzo-Dolcetta,et al.  The Globular Cluster Migratory Origin of Nuclear Star Clusters , 2014, 1405.7593.

[52]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[53]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[54]  I. Georgiev,et al.  Nuclear star clusters in 228 spiral galaxies in the HST/WFPC2 archive: catalogue and comparison to other stellar systems , 2014, 1404.5956.

[55]  R. Wijnands,et al.  Swift J1357.2-0933: the faintest black hole? , 2014, 1404.2134.

[56]  F. Pretorius,et al.  Parametrized post-Einsteinian framework for gravitational wave bursts , 2014, 1404.0092.

[57]  P. Amaro-Seoane,et al.  THE FRAGMENTING PAST OF THE DISK AT THE GALACTIC CENTER: THE CULPRIT FOR THE MISSING RED GIANTS , 2013, 1310.0458.

[58]  S. Tremaine,et al.  CO-EVOLUTION OF GALACTIC NUCLEI AND GLOBULAR CLUSTER SYSTEMS , 2013, 1308.0021.

[59]  R. Wijnands,et al.  DISCOVERY OF THE THIRD TRANSIENT X-RAY BINARY IN THE GALACTIC GLOBULAR CLUSTER TERZAN 5 , 2013, 1311.4449.

[60]  S. Gezari,et al.  THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT , 2013, 1309.3009.

[61]  T. Alexander,et al.  CONSTRAINING THE DARK CUSP IN THE GALACTIC CENTER BY LONG-PERIOD BINARIES , 2013, 1308.6638.

[62]  R. Townsend,et al.  GYRE: An open-source stellar oscillation code based on a new Magnus Multiple Shooting Scheme , 2013, 1308.2965.

[63]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[64]  D. Tsang SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS , 2013, 1307.3554.

[65]  J. Guillochon,et al.  TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS , 2013, 1305.4634.

[66]  Kristin K. Madsen,et al.  NuSTAR DISCOVERY OF A 3.76 s TRANSIENT MAGNETAR NEAR SAGITTARIUS A* , 2013, 1305.1945.

[67]  Douglas C. Heggie,et al.  Dynamical evolution of black hole subsystems in idealized star clusters , 2013, 1304.3401.

[68]  P. Jakobsson,et al.  A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.

[69]  Jessica R. Lu,et al.  STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION , 2013, 1301.0540.

[70]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[71]  W. Farr,et al.  RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2012, 1211.3372.

[72]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[73]  M. Benacquista,et al.  Relativistic Binaries in Globular Clusters , 2002, Living reviews in relativity.

[74]  C. Lawrence,et al.  AAS/High Energy Astrophysics Division , 2013 .

[75]  Laura Chomiuk,et al.  Two stellar-mass black holes in the globular cluster M22 , 2012, Nature.

[76]  Gravothermal oscillations in multi-component models of star clusters , 2012, 1207.2672.

[77]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[78]  L. Chomiuk,et al.  NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA , 2012, 1203.6352.

[79]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[80]  Fabio Antonini,et al.  DISSIPATIONLESS FORMATION AND EVOLUTION OF THE MILKY WAY NUCLEAR STAR CLUSTER , 2011, 1110.5937.

[81]  A. Sternberg,et al.  THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER , 2011, 1110.1633.

[82]  J. Fuller,et al.  Dynamical tides in compact white dwarf binaries: tidal synchronization and dissipation , 2011, 1108.4910.

[83]  R. Sunyaev,et al.  Coronal radiation of a cusp of spun-up stars and the X-ray luminosity of Sgr A* , 2011, 1108.2778.

[84]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[85]  J. Fuller,et al.  Tidal excitations of oscillation modes in compact white dwarf binaries – I. Linear theory , 2010, 1009.3316.

[86]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[87]  R. Wijnands,et al.  A four-year baseline Swift study of enigmatic X-ray transients located near the Galactic center , 2010, 1007.0249.

[88]  D. Merritt THE DISTRIBUTION OF STARS AND STELLAR REMNANTS AT THE GALACTIC CENTER , 2009, 0909.1318.

[89]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[90]  Pasadena,et al.  HIGH ANGULAR RESOLUTION INTEGRAL-FIELD SPECTROSCOPY OF THE GALAXY'S NUCLEAR CLUSTER: A MISSING STELLAR CUSP? , 2009, 0908.0311.

[91]  Pavel Kroupa,et al.  Stellar-mass black holes in star clusters: implications for gravitational-wave radiation , 2009, Proceedings of the International Astronomical Union.

[92]  C. Hopman,et al.  BINARY DYNAMICS NEAR A MASSIVE BLACK HOLE , 2009, 0906.0374.

[93]  A. Eckart,et al.  Composition of the galactic center star cluster. Population analysis from adaptive optics narrow ban , 2009, 0903.2135.

[94]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[95]  M. Davies,et al.  Red giant stellar collisions in the Galactic Centre , 2008, 0811.3111.

[96]  T. Alexander,et al.  STRONG MASS SEGREGATION AROUND A MASSIVE BLACK HOLE , 2008, 0808.3150.

[97]  K. Belczynski,et al.  Formation and evolution of compact binaries in globular clusters – II. Binaries with neutron stars , 2007, 0706.4096.

[98]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[99]  Alain Chenciner,et al.  Three body problem , 2007, Scholarpedia.

[100]  A. D. Mackey,et al.  Black Holes and Core Expansion in Massive Star Clusters , 2007, Proceedings of the International Astronomical Union.

[101]  T. Maccarone,et al.  A black hole in a globular cluster , 2007, Nature.

[102]  S. Gezari,et al.  Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole , 2006, astro-ph/0612069.

[103]  R. Wijnands,et al.  Faint X-Ray Sources in the Globular Cluster Terzan 5 , 2006, astro-ph/0606253.

[104]  G. Nelemans,et al.  The origin and fate of short-period low-mass black-hole binaries , 2006, astro-ph/0604434.

[105]  T. Alexander,et al.  The Effect of Mass Segregation on Gravitational Wave Sources near Massive Black Holes , 2006, astro-ph/0603324.

[106]  Pau Amaro-Seoane,et al.  Stellar Remnants in Galactic Nuclei: Mass Segregation , 2006 .

[107]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[108]  T. Alexander,et al.  Resonant Relaxation near a Massive Black Hole: The Stellar Distribution and Gravitational Wave Sources , 2006, astro-ph/0601161.

[109]  M. Pinsonneault,et al.  Mergers of Close Primordial Binaries , 2005, astro-ph/0509309.

[110]  V. Kalogera,et al.  The Brightest Point X-Ray Sources in Elliptical Galaxies and the Mass Spectrum of Accreting Black Holes , 2005, astro-ph/0506471.

[111]  W. M. Goss,et al.  A Radio Transient 0.1 Parsecs from Sagittarius A* , 2005, astro-ph/0507221.

[112]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[113]  S. Bogdanov,et al.  A Deep Chandra Survey of the Globular Cluster 47 Tucanae: Catalog of Point Sources , 2005, astro-ph/0503132.

[114]  N. Ivanova,et al.  The evolution of binary fractions in globular clusters , 2005, astro-ph/0501131.

[115]  MIT,et al.  An Overabundance of Transient X-Ray Binaries within 1 Parsec of the Galactic Center , 2004, astro-ph/0412492.

[116]  J. Grindlay,et al.  Three Additional Quiescent Low-Mass X-Ray Binary Candidates in 47 Tucanae , 2004, astro-ph/0412137.

[117]  T. Piran,et al.  The Luminosity and Angular Distributions of Long-Duration Gamma-Ray Bursts , 2003, astro-ph/0311488.

[118]  F. Rasio,et al.  Stellar collisions during binary–binary and binary–single star interactions , 2004, astro-ph/0401004.

[119]  A. Loeb,et al.  Probing the Spacetime around Sagittarius A* with Radio Pulsars , 2003, astro-ph/0309744.

[120]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[121]  D. Rouan,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[122]  T. Alexander,et al.  Squeezars: Tidally Powered Stars Orbiting a Massive Black Hole , 2003, astro-ph/0305061.

[123]  Yuri Levin,et al.  Stellar Disk in the Galactic Center: A Remnant of a Dense Accretion Disk? , 2003, astro-ph/0303436.

[124]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[125]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[126]  Andrew King,et al.  Accretion Power in Astrophysics: Third Edition , 2002 .

[127]  S. Mikkola,et al.  The Three-Body Problem: Author index , 2006 .

[128]  I. Novikov,et al.  A New Model of a Tidally Disrupted Star , 2000, astro-ph/0005107.

[129]  T. Alexander,et al.  Tidal Spin-up of Stars in Dense Stellar Cusps around Massive Black Holes , 2000, astro-ph/0004240.

[130]  Andrew Gould,et al.  A Cluster of Black Holes at the Galactic Center , 2000, astro-ph/0003269.

[131]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[132]  J. Lasota,et al.  X-ray irradiation in low-mass binary systems , 1998, astro-ph/9809036.

[133]  Alfred Krabbe,et al.  The Dark Mass Concentration in the Central Parsec of the Milky Way , 1996 .

[134]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[135]  Pawan Kumar,et al.  Nonlinear Damping of Oscillations in Tidal-Capture Binaries , 1995, astro-ph/9509112.

[136]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[137]  Alfred Krabbe,et al.  The Nuclear Cluster of the Milky Way: Star Formation and Velocity Dispersion in the Central 0.5 Parsec , 1995 .

[138]  R. Mardling The Role of Chaos in the Circularization of Tidal Capture Binaries. I. The Chaos Boundary , 1993, astro-ph/9312053.

[139]  Piet Hut,et al.  Stellar black holes in globular clusters , 1993, Nature.

[140]  Mark R. Morris,et al.  Massive star formation near the Galactic center and the fate of the stellar remnants , 1993 .

[141]  C. Kochanek The dynamical evolution of tidal capture binaries , 1992 .

[142]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[143]  Stuart Louis Shapiro,et al.  The Collapse of Dense Star Clusters to Supermassive Black Holes: Binaries and Gravitational Radiation , 1987 .

[144]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[145]  Jeremiah P. Ostriker,et al.  Cross sections for tidal capture binary formation and stellar merger , 1986 .

[146]  H. Cohn Direct Fokker-Planck calculations. , 1985 .

[147]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[148]  S. Tremaine,et al.  A reinvestigation of the standard model for the dynamics of a massive black hole in a globular cluster , 1980 .

[149]  R. Wolf,et al.  Star distribution around a massive black hole in a globular cluster. II. Unequal star masses , 1977 .

[150]  W. H. Press,et al.  On formation of close binaries by two-body tidal capture , 1977 .

[151]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[152]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[153]  Martin J. Rees,et al.  Tidal capture formation of binary systems and X-ray sources in globular clusters. , 1975 .

[154]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[155]  S. Tremaine,et al.  The formation of the nuclei of galaxies. I. M31. , 1975 .

[156]  J. Katz,et al.  Two kinds of stellar collapse , 1975, Nature.

[157]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[158]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .