On Refinements of Boolean and Parametric Modal Transition Systems

We consider the extensions of modal transition systems (MTS), namely Boolean MTS and parametric MTS and we investigate the refinement problems over both classes. Firstly, we reduce the problem of modal refinement over both classes to a problem solvable by a QBF solver and provide experimental results showing our technique scales well. Secondly, we extend the algorithm for thorough refinement of MTS providing better complexity than via reductions to previously studied problems. Finally, we investigate the relationship between modal and thorough refinement on the two classes and show how the thorough refinement can be approximated by the modal refinement.

[1]  Sebastián Uchitel,et al.  MTSA: Eclipse support for modal transition systems construction, analysis and elaboration , 2007, eclipse '07.

[2]  Kim G. Larsen,et al.  Graphical Versus Logical Specifications , 1990, Theor. Comput. Sci..

[3]  Kim G. Larsen,et al.  Parametric Modal Transition Systems , 2011, ATVA.

[4]  Marsha Chechik,et al.  Merging partial behavioural models , 2004, SIGSOFT '04/FSE-12.

[5]  Axel Legay,et al.  MIO Workbench: A Tool for Compositional Design with Modal Input/Output Interfaces , 2011, ATVA.

[6]  Bart Jacobs,et al.  A Logic for the Java Modeling Language JML , 2001, FASE.

[7]  Roberto Passerone,et al.  Why Are Modalities Good for Interface Theories? , 2009, 2009 Ninth International Conference on Application of Concurrency to System Design.

[8]  Axel Legay,et al.  A Modal Interface Theory for Component-based Design , 2011, Fundam. Informaticae.

[9]  Kim G. Larsen,et al.  EXPTIME-completeness of thorough refinement on modal transition systems , 2012, Inf. Comput..

[10]  Ulrik Mathias,et al.  Modal Transition Systems as the Basis for Interface Theories and Product Lines , 2015 .

[11]  Kedar S. Namjoshi,et al.  The existence of finite abstractions for branching time model checking , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[12]  Kim G. Larsen,et al.  20 Years of Modal and Mixed Specifications , 2008, Bull. EATCS.

[13]  Kim G. Larsen,et al.  Dual-Priced Modal Transition Systems with Time Durations , 2012, LPAR.

[14]  Harald Fecher,et al.  Comparing disjunctive modal transition systems with an one-selecting variant , 2008, J. Log. Algebraic Methods Program..

[15]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[16]  Alarico Campetelli,et al.  Don't Know for Multi-valued Systems , 2009, ATVA.

[17]  Kim G. Larsen,et al.  Equation solving using modal transition systems , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[18]  Glenn Bruns,et al.  An Industrial Application of Modal Process Logic , 1997, Sci. Comput. Program..

[19]  Kedar S. Namjoshi Abstraction for Branching Time Properties , 2003, CAV.

[20]  Thomas A. Henzinger,et al.  Interface automata , 2001, ESEC/FSE-9.

[21]  Orna Grumberg,et al.  Abstract interpretation of reactive systems , 1997, TOPL.

[22]  Ivana Cerná,et al.  Modal Transition Systems: Composition and LTL Model Checking , 2011, ATVA.

[23]  Radha Jagadeesan,et al.  Modal Transition Systems: A Foundation for Three-Valued Program Analysis , 2001, ESOP.

[24]  Sriram K. Rajamani,et al.  Compositional may-must program analysis: unleashing the power of alternation , 2010, POPL '10.

[25]  Luca Aceto,et al.  Graphical representation of covariant-contravariant modal formulae , 2011, EXPRESS.

[26]  Radha Jagadeesan,et al.  Abstraction-Based Model Checking Using Modal Transition Systems , 2001, CONCUR.

[27]  Axel Legay,et al.  Hennessy-Milner Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory , 2013, CONCUR.

[28]  Jean-Baptiste Raclet Quotient de spécifications pour la réutilisation de composants , 2007 .

[29]  Jeannette M. Wing,et al.  A behavioral notion of subtyping , 1994, TOPL.

[30]  Kim G. Larsen,et al.  Generality in design and compositional verification usingTav , 1992, Formal Methods Syst. Des..

[31]  Kim G. Larsen,et al.  On determinism in modal transition systems , 2009, Theor. Comput. Sci..

[32]  Kim G. Larsen,et al.  A modal process logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[33]  Kim G. Larsen,et al.  Modal I/O Automata for Interface and Product Line Theories , 2007, ESOP.