暂无分享,去创建一个
[1] R. Gelca. On the relation between the A-polynomial and the Jones polynomial , 2000, math/0004158.
[2] D. Rolfsen. Knots and Links , 2003 .
[3] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[4] Mark van Hoeij,et al. Factorization of Differential Operators with Rational Functions Coefficients , 1997, J. Symb. Comput..
[5] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[6] O. Ore. Theory of Non-Commutative Polynomials , 1933 .
[7] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[8] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[9] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[10] Fritz Schwarz,et al. A factorization algorithm for linear ordinary differential equations , 1989, ISSAC '89.
[11] Manuel Bronstein,et al. An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..
[12] J. Jantzen. Lectures on quantum groups , 1995 .
[13] Peter Horn,et al. Faktorisierung in Schief-Polynomringen , 2009 .
[14] R. Carter. LECTURES ON QUANTUM GROUPS (Graduate Studies in Mathematics 6) By Jens Carsten Jantzen: 266 pp., US$44.00, ISBN 0 8218 0478 2 (American Mathematical Society, 1996). , 1997 .
[15] H. Engl,et al. Johann Radon Institute for Computational and Applied Mathematics , 2004 .
[16] Anh T. Tran,et al. On the AJ conjecture for knots , 2011, 1111.5258.
[17] Darren D. Long,et al. Plane curves associated to character varieties of 3-manifolds , 1994 .
[18] Herbert S. Wilf. The Distribution of Run Lengths in Integer Compositions , 2011, Electron. J. Comb..
[19] S. Garoufalidis. Quantum knot invariants , 2012, 1201.3314.
[20] Christoph Koutschan,et al. A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..
[21] A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres , 2006, math/0605314.
[22] M. Bauer,et al. Triangulations , 1996, Discret. Math..
[23] G. Ziegler. Lectures on Polytopes , 1994 .
[24] Serguei P. Tsarev,et al. An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator , 1996, ISSAC '96.
[25] Thang T. Q. Lê,et al. The colored Jones function is q-holonomic , 2003, math/0309214.
[26] K. Roberts,et al. Thesis , 2002 .
[27] Sergei A. Abramov,et al. q-Hypergeometric solutions of q-difference equations , 1998, Discret. Math..
[28] Stavros Garoufalidis,et al. The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial , 2010, Electron. J. Comb..
[30] Mark van Hoeij,et al. Computing Hypergeometric Solutions of Linear Recurrence Equations , 2006, Applicable Algebra in Engineering, Communication and Computing.
[31] S. Garoufalidis. THE NEWTON POLYGON OF A RECURRENCE SEQUENCE OF POLYNOMIALS AND ITS ROLE IN TQFT , 2011, 1102.1346.
[32] Xinyu Sun,et al. THE NON-COMMUTATIVE A-POLYNOMIAL OF TWIST KNOTS , 2008, 0802.4074.
[33] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[34] V. Turaev. The Yang-Baxter equation and invariants of links , 1988 .
[35] S. Garoufalidis. The role of holonomy in TQFT , 2011 .
[36] The C–polynomial of a knot , 2005, math/0504305.
[37] Marius van der Put,et al. Galois Theory of Linear Differential Equations , 2012 .
[38] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[39] Peter Paule,et al. A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .
[40] S. Garoufalidis. The Jones slopes of a knot , 2009, 0911.3627.
[41] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..
[42] Skein-theoretical derivation of some formulas of Habiro , 2003, math/0306345.
[43] Thang T. Q. Lê. The colored Jones polynomial and the A-polynomial of Knots☆ , 2004, math/0407521.
[44] P. Etingof,et al. Lectures on Quantum Groups , 2001 .
[45] Doron Zeilberger. A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..
[47] Christoph Koutschan,et al. Advanced applications of the holonomic systems approach , 2010, ACCA.