Irreducibility of q-difference operators and the knot 7_4

Our goal is to compute the minimal-order recurrence of the colored Jones poly- nomial of the 74 knot, as well as for the first four double twist knots. As a corollary, we verify the AJ Conjecture for the simplest knot 74 with reducible non-abelian SL(2, ) char- acter variety. To achieve our goal, we use symbolic summation techniques of Zeilberger's holonomic systems approach and an irreducibility criterion for q-difference operators. For the latter we use an improved version of the qHyper algorithm of Abramov-Paule-Petkovysek to show that a given q-difference operator has no linear right factors. En route, we in- troduce exterior power Adams operations on the ring of bivariate polynomials and on the corresponding affine curves.

[1]  R. Gelca On the relation between the A-polynomial and the Jones polynomial , 2000, math/0004158.

[2]  D. Rolfsen Knots and Links , 2003 .

[3]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[4]  Mark van Hoeij,et al.  Factorization of Differential Operators with Rational Functions Coefficients , 1997, J. Symb. Comput..

[5]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[6]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[7]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[8]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[9]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[10]  Fritz Schwarz,et al.  A factorization algorithm for linear ordinary differential equations , 1989, ISSAC '89.

[11]  Manuel Bronstein,et al.  An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..

[12]  J. Jantzen Lectures on quantum groups , 1995 .

[13]  Peter Horn,et al.  Faktorisierung in Schief-Polynomringen , 2009 .

[14]  R. Carter LECTURES ON QUANTUM GROUPS (Graduate Studies in Mathematics 6) By Jens Carsten Jantzen: 266 pp., US$44.00, ISBN 0 8218 0478 2 (American Mathematical Society, 1996). , 1997 .

[15]  H. Engl,et al.  Johann Radon Institute for Computational and Applied Mathematics , 2004 .

[16]  Anh T. Tran,et al.  On the AJ conjecture for knots , 2011, 1111.5258.

[17]  Darren D. Long,et al.  Plane curves associated to character varieties of 3-manifolds , 1994 .

[18]  Herbert S. Wilf The Distribution of Run Lengths in Integer Compositions , 2011, Electron. J. Comb..

[19]  S. Garoufalidis Quantum knot invariants , 2012, 1201.3314.

[20]  Christoph Koutschan,et al.  A Fast Approach to Creative Telescoping , 2010, Math. Comput. Sci..

[21]  A unified Witten–Reshetikhin–Turaev invariant for integral homology spheres , 2006, math/0605314.

[22]  M. Bauer,et al.  Triangulations , 1996, Discret. Math..

[23]  G. Ziegler Lectures on Polytopes , 1994 .

[24]  Serguei P. Tsarev,et al.  An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator , 1996, ISSAC '96.

[25]  Thang T. Q. Lê,et al.  The colored Jones function is q-holonomic , 2003, math/0309214.

[26]  K. Roberts,et al.  Thesis , 2002 .

[27]  Sergei A. Abramov,et al.  q-Hypergeometric solutions of q-difference equations , 1998, Discret. Math..

[28]  Stavros Garoufalidis,et al.  The Degree of a q-Holonomic Sequence is a Quadratic Quasi-Polynomial , 2010, Electron. J. Comb..

[30]  Mark van Hoeij,et al.  Computing Hypergeometric Solutions of Linear Recurrence Equations , 2006, Applicable Algebra in Engineering, Communication and Computing.

[31]  S. Garoufalidis THE NEWTON POLYGON OF A RECURRENCE SEQUENCE OF POLYNOMIALS AND ITS ROLE IN TQFT , 2011, 1102.1346.

[32]  Xinyu Sun,et al.  THE NON-COMMUTATIVE A-POLYNOMIAL OF TWIST KNOTS , 2008, 0802.4074.

[33]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[34]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[35]  S. Garoufalidis The role of holonomy in TQFT , 2011 .

[36]  The C–polynomial of a knot , 2005, math/0504305.

[37]  Marius van der Put,et al.  Galois Theory of Linear Differential Equations , 2012 .

[38]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[39]  Peter Paule,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .

[40]  S. Garoufalidis The Jones slopes of a knot , 2009, 0911.3627.

[41]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[42]  Skein-theoretical derivation of some formulas of Habiro , 2003, math/0306345.

[43]  Thang T. Q. Lê The colored Jones polynomial and the A-polynomial of Knots☆ , 2004, math/0407521.

[44]  P. Etingof,et al.  Lectures on Quantum Groups , 2001 .

[45]  Doron Zeilberger A fast algorithm for proving terminating hypergeometric identities , 2006, Discret. Math..

[47]  Christoph Koutschan,et al.  Advanced applications of the holonomic systems approach , 2010, ACCA.