Influence of temperature on yield value of highly flowable micromortars made with sulfonate-based superplasticizers

Self-consolidating concretes (SCC) were proved to be very dependant on concreting temperature and the elapsed time. To enhance the concreting conditions of these flowable concretes, it is important to have a better knowledge of their rheological behavior, depending on the kind of superplasticizer used. The variation of the plastic viscosity and the yield value with the elapsed time and temperature must be accurately quantified. However, the methods of measuring these parameters are expensive and unsuitable with a good forecast of the material behavior due to numerous parameters that interact with each other. A simplest method to study the variation of these rheological parameters, depending on the mixture design, is proposed, using the micromortar, which derivates from the studied SCC. Moreover, to forecast the concrete behavior on the site, a simple thermodynamical approach of the cementitious matrix behavior through the study of the hydration kinetics is described.